Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pattern Recognit ; 1242022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38469076

RESUMEN

Accurate segmentation of the brain into gray matter, white matter, and cerebrospinal fluid using magnetic resonance (MR) imaging is critical for visualization and quantification of brain anatomy. Compared to 3T MR images, 7T MR images exhibit higher tissue contrast that is contributive to accurate tissue delineation for training segmentation models. In this paper, we propose a cascaded nested network (CaNes-Net) for segmentation of 3T brain MR images, trained by tissue labels delineated from the corresponding 7T images. We first train a nested network (Nes-Net) for a rough segmentation. The second Nes-Net uses tissue-specific geodesic distance maps as contextual information to refine the segmentation. This process is iterated to build CaNes-Net with a cascade of Nes-Net modules to gradually refine the segmentation. To alleviate the misalignment between 3T and corresponding 7T MR images, we incorporate a correlation coefficient map to allow well-aligned voxels to play a more important role in supervising the training process. We compared CaNes-Net with SPM and FSL tools, as well as four deep learning models on 18 adult subjects and the ADNI dataset. Our results indicate that CaNes-Net reduces segmentation errors caused by the misalignment and improves segmentation accuracy substantially over the competing methods.

2.
IEEE Trans Med Imaging ; 40(5): 1363-1376, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33507867

RESUMEN

To better understand early brain development in health and disorder, it is critical to accurately segment infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Deep learning-based methods have achieved state-of-the-art performance; h owever, one of the major limitations is that the learning-based methods may suffer from the multi-site issue, that is, the models trained on a dataset from one site may not be applicable to the datasets acquired from other sites with different imaging protocols/scanners. To promote methodological development in the community, the iSeg-2019 challenge (http://iseg2019.web.unc.edu) provides a set of 6-month infant subjects from multiple sites with different protocols/scanners for the participating methods. T raining/validation subjects are from UNC (MAP) and testing subjects are from UNC/UMN (BCP), Stanford University, and Emory University. By the time of writing, there are 30 automatic segmentation methods participated in the iSeg-2019. In this article, 8 top-ranked methods were reviewed by detailing their pipelines/implementations, presenting experimental results, and evaluating performance across different sites in terms of whole brain, regions of interest, and gyral landmark curves. We further pointed out their limitations and possible directions for addressing the multi-site issue. We find that multi-site consistency is still an open issue. We hope that the multi-site dataset in the iSeg-2019 and this review article will attract more researchers to address the challenging and critical multi-site issue in practice.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Sustancia Gris , Humanos , Lactante
3.
Artículo en Inglés | MEDLINE | ID: mdl-34422223

RESUMEN

Due to the extremely low intensity contrast between the white matter (WM) and the gray matter (GM) at around 6 months of age (the isointense phase), it is difficult for manual annotation, hence the number of training labels is highly limited. Consequently, it is still challenging to automatically segment isointense infant brain MRI. Meanwhile, the contrast of intensity images in the early adult phase, such as 24 months of age, is a relatively better, which can be easily segmented by the well-developed tools, e.g., FreeSurfer. Therefore, the question is how could we employ these high-contrast images (such as 24-month-old images) to guide the segmentation of 6-month-old images. Motivated by the above purpose, we propose a method to explore the 24-month-old images for a reliable tissue segmentation of 6-month-old images. Specifically, we design a 3D-cycleGAN-Seg architecture to generate synthetic images of the isointense phase by transferring appearances between the two time-points. To guarantee the tissue segmentation consistency between 6-month-old and 24-month-old images, we employ features from generated segmentations to guide the training of the generator network. To further improve the quality of synthetic images, we propose a feature matching loss that computes the cosine distance between unpaired segmentation features of the real and fake images. Then, the transferred of 24-month-old images is used to jointly train the segmentation model on the 6-month-old images. Experimental results demonstrate a superior performance of the proposed method compared with the existing deep learning-based methods.

4.
Artif Intell Med ; 97: 1-8, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31202395

RESUMEN

Bone age assessment plays an important role in the endocrinology and genetic investigation of patients. In this paper, we proposed a deep learning-based approach for bone age assessment by integration of the Tanner-Whitehouse (TW3) methods and deep convolution networks based on extracted regions of interest (ROI)-detection and classification using Faster-RCNN and Inception-v4 networks, respectively. The proposed method allows exploration of expert knowledge from TW3 and features engineering from deep convolution networks to enhance the accuracy of bone age assessment. The experimental results showed a mean absolute error of about 0.59 years between expert radiologists and the proposed method, which is the best performance among state-of-the-art methods.


Asunto(s)
Determinación de la Edad por el Esqueleto/métodos , Aprendizaje Profundo , Redes Neurales de la Computación , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
5.
Artículo en Inglés | MEDLINE | ID: mdl-30835215

RESUMEN

Accurate segmentation of infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is an indispensable foundation for early studying of brain growth patterns and morphological changes in neurodevelopmental disorders. Nevertheless, in the isointense phase (approximately 6-9 months of age), due to inherent myelination and maturation process, WM and GM exhibit similar levels of intensity in both T1-weighted (T1w) and T2-weighted (T2w) MR images, making tissue segmentation very challenging. Despite many efforts were devoted to brain segmentation, only few studies have focused on the segmentation of 6-month infant brain images. With the idea of boosting methodological development in the community, iSeg-2017 challenge (http://iseg2017.web.unc.edu) provides a set of 6-month infant subjects with manual labels for training and testing the participating methods. Among the 21 automatic segmentation methods participating in iSeg-2017, we review the 8 top-ranked teams, in terms of Dice ratio, modified Hausdorff distance and average surface distance, and introduce their pipelines, implementations, as well as source codes. We further discuss limitations and possible future directions. We hope the dataset in iSeg-2017 and this review article could provide insights into methodological development for the community.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32090208

RESUMEN

The deep convolutional neural network has achieved outstanding performance on neonatal brain MRI tissue segmentation. However, it may fail to produce reasonable results on unseen datasets that have different imaging appearance distributions with the training data. The main reason is that deep learning models tend to have a good fitting to the training dataset, but do not lead to a good generalization on the unseen datasets. To address this problem, we propose a multi-task learning method, which simultaneously learns both tissue segmentation and geodesic distance regression to regularize a shared encoder network. Furthermore, a dense attention gate is explored to force the network to learn rich contextual information. By using three neonatal brain datasets with different imaging protocols from different scanners, our experimental results demonstrate superior performance of our proposed method over the existing deep learning-based methods on the unseen datasets.

7.
Biomed Eng Online ; 15(1): 99, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27558127

RESUMEN

BACKGROUND: This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. METHODS: We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. RESULTS: The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. CONCLUSIONS: Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Osteoartritis/diagnóstico por imagen , Adulto , Anciano , Automatización , Cartílago Articular/diagnóstico por imagen , Estudios de Casos y Controles , Lógica Difusa , Humanos , Persona de Mediana Edad , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...