Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 116(6): 1582-1599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37824282

RESUMEN

Chloroplast ATP synthase contains subunits of plastid and nuclear genetic origin. To investigate the coordinated biogenesis of this complex, we isolated novel ATP synthase mutants in the green alga Chlamydomonas reinhardtii by screening for high light sensitivity. We report here the characterization of mutants affecting the two peripheral stalk subunits b and b', encoded respectively by the atpF and ATPG genes, and of three independent mutants which identify the nuclear factor MDE1, required to stabilize the chloroplast-encoded atpE mRNA. Whole-genome sequencing revealed a transposon insertion in the 3'UTR of ATPG while mass spectrometry shows a small accumulation of functional ATP synthase in this knock-down ATPG mutant. In contrast, knock-out ATPG mutants, obtained by CRISPR-Cas9 gene editing, fully prevent ATP synthase function and accumulation, as also observed in an atpF frame-shift mutant. Crossing ATP synthase mutants with the ftsh1-1 mutant of the major thylakoid protease identifies AtpH as an FTSH substrate, and shows that FTSH significantly contributes to the concerted accumulation of ATP synthase subunits. In mde1 mutants, the absence of atpE transcript fully prevents ATP synthase biogenesis and photosynthesis. Using chimeric atpE genes to rescue atpE transcript accumulation, we demonstrate that MDE1, a novel octotricopeptide repeat (OPR) protein, genetically targets the atpE 5'UTR. In the perspective of the primary endosymbiosis (~1.5 Gy), the recruitment of MDE1 to its atpE target exemplifies a nucleus/chloroplast interplay that evolved rather recently, in the ancestor of the CS clade of Chlorophyceae, ~300 My ago.


Asunto(s)
Chlamydomonas reinhardtii , ATPasas de Translocación de Protón de Cloroplastos , ATPasas de Translocación de Protón de Cloroplastos/genética , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Adenosina Trifosfato/metabolismo
2.
C R Biol ; 345(2): 15-38, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847462

RESUMEN

Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.


Les microalgues, organismes aquatiques majeurs, sont responsables de la moitié de l'activité photosynthétique planétaire. La lumière représente pour les microalgues une source d'énergie ainsi que d'informations sur leur environnement. Ces 20 dernières années, les progrès en génomique et biologie des écosystèmes et la disponibilité de ressources génétiques pour de nouvelles espèces modèles ont permis d'apprécier leur importance dans les écosystèmes globaux. Néanmoins, du fait de leur grande diversité et de leur histoire évolutive complexe, notre compréhension de la biologie des microalgues reste limitée. Nous nous concentrons ici sur la photosynthèse, la photoperception, et la biogenèse des plastes chez l'algue verte Chlamydomonas reinhardtii et les diatomées marines. Nous décrivons comment l'étude des processus gouvernés par la lumière ouvre de nouvelles perspectives pour l'étude de la biodiversité fonctionnelle des microalgues. Nous soulignons combien seule l'intégration d'études en laboratoire et en contexte environnemental et le dialogue entre les communautés scientifiques concernées permettront de comprendre la vie de ces phototrophes dans des écosystèmes complexes, et d'évaluer correctement les conséquences des changements environnementaux sur les milieux aquatiques.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Ecosistema , Fotosíntesis , Biodiversidad , Chlamydomonas reinhardtii/genética
3.
Plant Cell Physiol ; 63(1): 70-81, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34592750

RESUMEN

The unicellular green alga, Chlamydomonas reinhardtii, contains many light-harvesting complexes (LHCs) associating chlorophylls a/b and carotenoids; the major LHCIIs (types I, II, III and IV) and minor light-harvesting complexes, CP26 and CP29, for photosystem II, as well as nine LHCIs (LHCA1-9), for photosystem I. A pale green mutant BF4 exhibited impaired accumulation of LHCs due to deficiency in the Alb3.1 gene, which encodes the insertase involved in insertion, folding and assembly of LHC proteins in the thylakoid membranes. To elucidate the molecular mechanism by which ALB3.1 assists LHC assembly, we complemented BF4 to express ALB3.1 fused with no, single or triple Human influenza hemagglutinin (HA) tag at its C-terminus (cAlb3.1, cAlb3.1-HA or cAlb3.1-3HA). The resulting complemented strains accumulated most LHC proteins comparable to wild-type (WT) levels. The affinity purification of Alb3.1-HA and Alb3.1-3HA preparations showed that ALB3.1 interacts with cpSRP43 and cpSRP54 proteins of the chloroplast signal recognition particle (cpSRP) and several LHC proteins; two major LHCII proteins (types I and III), two minor LHCII proteins (CP26 and CP29) and eight LHCI proteins (LHCA1, 2, 3, 4, 5, 6, 8 and 9). Pulse-chase labeling experiments revealed that the newly synthesized major LHCII proteins were transiently bound to the Alb3.1 complex. We propose that Alb3.1 interacts with cpSRP43 and cpSRP54 to form an assembly apparatus for most LHCs in the thylakoid membranes. Interestingly, photosystem I (PSI) proteins were also detected in the Alb3.1 preparations, suggesting that the integration of LHCIs to a PSI core complex to form a PSI-LHCI subcomplex occurs before assembled LHCIs dissociate from the Alb3.1-cpSRP complex.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Tilacoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo
4.
Biochim Biophys Acta Bioenerg ; 1861(4): 148085, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672413

RESUMEN

Two pale green mutants of the green alga Chlamydomonas reinhardtii, which have been used over the years in many photosynthesis studies, the BF4 and p71 mutants, were characterized and their mutated gene identified in the nuclear genome. The BF4 mutant is defective in the insertase Alb3.1 whereas p71 is defective in cpSRP43. The two mutants showed strikingly similar deficiencies in most of the peripheral antenna proteins associated with either photosystem I or photosystem 2. As a result the two photosystems have a reduced antenna size with photosystem 2 being the most affected. Still up to 20% of the antenna proteins remain in these strains, with the heterodimer Lhca5/Lhca6 showing a lower sensitivity to these mutations. We discuss these phenotypes in light of those of other allelic mutants that have been described in the literature and suggest that eventhough the cpSRP route serves as the main biogenesis pathway for antenna proteins, there should be an escape pathway which remains to be genetically identified.


Asunto(s)
Chlamydomonas reinhardtii/genética , Complejos de Proteína Captadores de Luz/genética , Mutación/genética , Clorofila/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fenotipo , Fosforilación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Espectrometría de Fluorescencia , Temperatura
5.
Life Sci Alliance ; 2(3)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31160377

RESUMEN

Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3' overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/genética , Telomerasa/genética , Telómero/genética , Secuencia de Aminoácidos , Secuencia de Bases , Variación Genética , Polimorfismo de Longitud del Fragmento de Restricción , Secuencias Repetitivas de Ácidos Nucleicos , Telomerasa/química , Telomerasa/metabolismo , Homeostasis del Telómero , Acortamiento del Telómero
6.
Mol Plant ; 10(1): 115-130, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27742488

RESUMEN

The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Clorofila/fisiología , Alelos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Clorofila/biosíntesis , Clorofila/genética , Proteínas de Unión a Clorofila/genética , Luz , Oxigenasas/metabolismo , Mutación Puntual , Proteínas de las Membranas de los Tilacoides/metabolismo
7.
Plant Physiol ; 170(2): 821-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26644506

RESUMEN

The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Chlamydomonas reinhardtii/ultraestructura , Luz , Modelos Biológicos , Complejo de Proteína del Fotosistema II/genética , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Tilacoides/ultraestructura
8.
Plant Physiol ; 166(1): 152-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25037213

RESUMEN

The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Ciclo Celular , Cloroplastos/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Ciclinas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Plant J ; 67(6): 1055-66, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21623973

RESUMEN

After endosymbiosis, organelles lost most of their initial genome. Moreover, expression of the few remaining genes became tightly controlled by the nucleus through trans-acting protein factors that are required for post-transcriptional expression (maturation/stability or translation) of a single (or a few) specific organelle target mRNA(s). Here, we characterize the nucleus-encoded TDA1 factor, which is specifically required for translation of the chloroplast atpA transcript that encodes subunit α of ATP synthase in Chlamydomonas reinhardtii. The sequence of TDA1 contains eight copies of a degenerate 38-residue motif, that we named octotrico peptide repeat (OPR), which has been previously described in a few other trans-acting factors targeted to the C. reinhardtii chloroplast. Interestingly, a proportion of the untranslated atpA transcripts are sequestered into high-density, non-polysomic, ribonucleoprotein complexes. Our results suggest that TDA1 has a dual function: (i) trapping a subset of untranslated atpA transcripts into non-polysomic complexes, and (ii) translational activation of these transcripts. We discuss these results in light of our previous observation that only a proportion of atpA transcripts are translated at any given time in the chloroplast of C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones no Traducidas 5' , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Núcleo Celular/genética , Chlamydomonas reinhardtii/genética , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cloroplastos/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Ribonucleoproteínas/metabolismo
10.
Plant Cell ; 23(1): 333-49, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21216944

RESUMEN

Organelle gene expression is characterized by nucleus-encoded trans-acting factors that control posttranscriptional steps in a gene-specific manner. As a typical example, in Chlamydomonas reinhardtii, expression of the chloroplast petA gene encoding cytochrome f, a major subunit of the cytochrome b(6)f complex, depends on MCA1 and TCA1, required for the accumulation and translation of the petA mRNA. Here, we show that these two proteins associate in high molecular mass complexes that also contain the petA mRNA. We demonstrate that MCA1 is degraded upon interaction with unassembled cytochrome f that transiently accumulates during the biogenesis of the cytochrome b(6)f complex. Strikingly, this interaction relies on the very same residues that form the repressor motif involved in the Control by Epistasy of cytochrome f Synthesis (CES), a negative feedback mechanism that downregulates cytochrome f synthesis when its assembly within the cytochrome b(6)f complex is compromised. Based on these new findings, we present a revised picture for the CES regulation of petA mRNA translation that involves proteolysis of the translation enhancer MCA1, triggered by its interaction with unassembled cytochrome f.


Asunto(s)
Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Citocromos f/biosíntesis , Proteínas de Plantas/metabolismo , Transactivadores/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clonación Molecular , Complejo de Citocromo b6f/biosíntesis , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas/genética , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Transactivadores/genética
11.
Plant Cell ; 22(1): 234-48, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20097872

RESUMEN

We identify and functionally characterize MRL1, a conserved nuclear-encoded regulator of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. The nonphotosynthetic mrl1 mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase/oxygenase, and the resulting block in electron transfer is partially compensated by redirecting electrons toward molecular oxygen via the Mehler reaction. This allows continued electron flow and constitutive nonphotochemical quenching, enhancing cell survival during illumination in spite of photosystem II and photosystem I photoinhibition. The mrl1 mutant transcribes rbcL normally, but the mRNA is unstable. The molecular target of MRL1 is the 5 ' untranslated region of rbcL. MRL1 is located in the chloroplast stroma, in a high molecular mass complex. Treatment with RNase or deletion of the rbcL gene induces a shift of the complex toward lower molecular mass fractions. MRL1 is well conserved throughout the green lineage, much more so than the 10 other pentatricopeptide repeat proteins found in Chlamydomonas. Depending upon the organism, MRL1 contains 11 to 14 pentatricopeptide repeats followed by a novel MRL1-C domain. In Arabidopsis thaliana, MRL1 also acts on rbcL and is necessary for the production/stabilization of the processed transcript, presumably because it acts as a barrier to 5 ' >3 ' degradation. The Arabidopsis mrl1 mutant retains normal levels of the primary transcript and full photosynthetic capacity.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Regiones no Traducidas 5' , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fotosíntesis , Filogenia , Estabilidad del ARN , ARN de Algas/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética
12.
Photosynth Res ; 102(1): 85-93, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19697150

RESUMEN

Here, we describe a new imaging setup able to assess in vivo photosynthetic activity. The system specifically measures time-resolved chlorophyll fluorescence in response to light. It is composed of a fast digital camera equipped with a wide-angle lens for the analysis of samples up to 10 x 10 cm, i.e. entire plants or petri dishes. In the choice of CCD, we have opted for a 12-bits high frame rate [150 fps (frames per second)] at the expense of definition (640 x 480 pixels). Although the choice of digital camera is always a compromise between these two related features, we have designed a flexible system allowing the fast sampling of images (down to 100 micros) with a maximum spatial resolution. This image readout system, synchronized with actinic light and saturating pulses, allows a precise determination of F(0) and F(M), which is required to monitor PSII activity. This new imaging system, together with image processing techniques, is useful to investigate the heterogeneity of photosynthetic activity within leaves or to screen large numbers of unicellular algal mutant colonies to identify those with subtle changes in photosynthetic electron flow.


Asunto(s)
Imagenología Tridimensional/instrumentación , Fotosíntesis/fisiología , Western Blotting , Chlamydomonas/fisiología , Complejo de Citocromo b6f/metabolismo , Fluorescencia , Cinética , Mutación/genética , Oxidación-Reducción , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...