Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(12)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097342

RESUMEN

BACKGROUND: One of the major challenges in chimeric antigen receptor (CAR)-T cell therapy for solid tumors is the potential for on-target off-tumor toxicity due to the expression of CAR tumor antigens in essential tissues and organs. Here, we describe a dual CAR NOT gate incorporating an inhibitory CAR (iCAR) recognizing HLA-A*02 ("A2") that enables effective treatment with a potent HER2 activating CAR (aCAR) in the context of A2 loss of heterozygosity (LOH). METHODS: A CAR-T cell screen was conducted to identify inhibitory domains derived from natural immune receptors (iDomains) to be used in a NOT gate, to kill A2- HER2+ lung cancer cell lines but spare A2+ HER2+ lung cancer cell-lines with high specificity. The extensive analysis of lead candidates included T-cell activation and killing, assays of reversibility and durability in sequential challenges, target cell specificity in mixed 3D spheroids and 2D cultures, and the characterization of CAR expression level and cell-trafficking. RESULTS: A leukocyte immunoglobulin-like receptor B1 (LIR1) iDomain iCAR was identified as most effective in regulating the cytotoxicity of a second generation HER2 aCAR. Target transfer experiments demonstrated that the 'on' and 'off' cell state of the LIR1 NOT gate CAR-T cell is both durable and reversible. Protection required iCAR signaling and was associated with reduced aCAR and iCAR surface expression. iCAR regulation was sufficient to generate high target specificity in a 3D adjacent spheroid assay designed to model the interface between clonal A2 LOH foci and normal tissue. However, we observed significant bystander killing of A2+ cells in admix culture through aCAR dependent and independent mechanisms. LIR1 NOT gate CAR-T cells conferred protection against H1703-A2+ tumors and high efficacy against H1703-A2- tumors in-vivo. We observed that the iCAR is inactive in A2+ donors due to cis-binding, but Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout of HLA-A fully restored iCAR activity. CONCLUSIONS: We have preclinically validated an iCAR NOT gate technology broadly applicable for targeting HER2 expression in the context of A2 LOH. This approach is designed to prevent off tumor toxicity while allowing highly potent antitumor activity.


Asunto(s)
Neoplasias Pulmonares , Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T , Complejo Hierro-Dextran/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Antígenos HLA-A
2.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36765677

RESUMEN

Acute Myeloid Leukemia (AML) is a severe disease with a very high relapse rate. AML relapse may be attributable to leukemic stem cells (LSC). Notably, the "cancer stem cell" theory, which relates to LSCs, is controversial and criticized due to the technical peculiarities of the xenotransplant of human cells into mice. In this study, we searched for possible LSCs in an immunocompetent synergetic mice model. First, we found phenotypic heterogeneity in the ML23 leukemia line. We prospectively isolated a sub-population using the surface markers cKit+CD9-CD48+Mac1-/low, which have the potency to relapse the disease. Importantly, this sub-population can pass in syngeneic hosts and retrieve the heterogeneity of the parental ML23 leukemia line. The LSC sub-population resides in various organs. We present a unique gene expression signature of the LSC in the ML23 model compared to the other sub-populations. Interestingly, the ML23 LSC sub-population expresses therapeutic targeted genes such as CD47 and CD93. Taken together, we present the identification and molecular characterization of LSCs in a syngeneic murine model.

3.
Immunol Cell Biol ; 101(3): 231-248, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36567516

RESUMEN

Vaccination and natural infection both elicit potent humoral responses that provide protection from subsequent infections. The immune history of an individual following such exposures is in part encoded by antibodies. While there are multiple immunoassays for measuring antibody responses, the majority of these methods measure responses to a single antigen. A commonly used method for measuring antibody responses is ELISA-a semiquantitative assay that is simple to perform in research and clinical settings. Here, we present FLU-LISA (fluorescence-linked immunosorbent assay)-a novel antigen microarray-based assay for rapid high-throughput antibody profiling. The assay can be used for profiling immunoglobulin (Ig) G, IgA and IgM responses to multiple antigens simultaneously, requiring minimal amounts of sample and antigens. Using several influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen microarrays, we demonstrated the specificity and sensitivity of our novel assay and compared it with the traditional ELISA, using samples from mice, chickens and humans. We also showed that our assay can be readily used with dried blood spots, which can be collected from humans and wild birds. FLU-LISA can be readily used to profile hundreds of samples against dozens of antigens in a single day, and therefore offers an attractive alternative to the traditional ELISA.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Animales , Ratones , Inmunoadsorbentes , Anticuerpos Antivirales , Pollos , SARS-CoV-2 , Antígenos , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Inmunoglobulina M
4.
Stem Cell Reports ; 16(8): 1884-1893, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34297939

RESUMEN

Immune cells are generated from hematopoietic stem cells (HSCs) in the bone marrow (BM). Immune stimulation can rapidly activate HSCs out of their quiescent state to accelerate the generation of immune cells. HSCs' activation follows various viral or bacterial stimuli, and we sought to investigate the hypersensitivity immune response. Surprisingly, the Ova-induced hypersensitivity peritonitis model finds no significant changes in BM HSCs. HSC markers cKIT, SCA1, CD48, CD150, and the Fgd5-mCherry reporter showed no significant difference from control. Functionally, hypersensitivity did not alter HSCs' potency, as assayed by transplantation. We further characterized the possible impact of hypersensitivity using RNA-sequencing of HSCs, finding minor changes at the transcriptome level. Moreover, hypersensitivity induced no significant change in the proliferative state of HSCs. Therefore, this study suggests that, in contrast to other immune stimuli, hypersensitivity has no impact on HSCs.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células de la Médula Ósea/inmunología , Células Madre Hematopoyéticas/inmunología , Hipersensibilidad/inmunología , Transcriptoma/inmunología , Animales , Ataxina-1/genética , Ataxina-1/inmunología , Ataxina-1/metabolismo , Células de la Médula Ósea/metabolismo , Antígeno CD48/genética , Antígeno CD48/inmunología , Antígeno CD48/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/inmunología , Proteínas Proto-Oncogénicas c-kit/metabolismo , RNA-Seq/métodos , Transcriptoma/genética
5.
Sci Rep ; 10(1): 1812, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020016

RESUMEN

Haematopoietic stem cells (HSCs) have the potential for lifetime production of blood and immune cells. The introduction of transgenes into HSCs is important for basic research, as well as for multiple clinical applications, because HSC transplantation is an already established procedure. Recently, a major advancement has been reported in the use of cyclosporine H (CsH), which can significantly enhance the lentivirus (LV) transduction of human haematopoietic stem and progenitor cells (HSPCs). In this study, we employed CsH for LV transduction of murine HSCs and defined haematopoietic progenitors, confirming previous findings in more specific subsets of primitive haematopoietic cells. Our data confirm increased efficiencies, in agreement with the published data. We further experimented with the transduction with the simultaneous use of several vectors. The use of CsH yielded an even more robust increase in rates of multi-vector infection than the increase for a single-vector. CsH was reported to reduce the innate resistance mechanism against LV infection. We indeed found that additional pretreatment could increase the efficiency of transduction, in agreement with the originally reported results. Our data also suggest that CsH does not reduce the efficiency of transplantation into immune-competent hosts or the differentiation of HSCs while enhancing stable long-term expression in vivo. This new additive will surely help many studies in animal models and might be very useful for the development of novel HSC gene therapy approaches.


Asunto(s)
Ciclosporina , Células Madre Hematopoyéticas/metabolismo , Transducción Genética/métodos , Animales , Técnicas de Transferencia de Gen , Vectores Genéticos , Lentivirus , Ratones
6.
ACS Chem Neurosci ; 10(8): 3555-3564, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31141342

RESUMEN

Extensive neuronal cell death is among the pathological hallmarks of Alzheimer's disease. While neuron death is coincident with formation of plaques comprising the beta-amyloid (Aß) peptide, a direct causative link between Aß (or other Alzheimer's-associated proteins) and cell toxicity is yet to be found. Here we show that BIM-BH3, the primary proapoptotic domain of BIM, a key protein in varied apoptotic cascades of which elevated levels have been found in brain cells of patients afflicted with Alzheimer's disease, interacts with the 42-residue amyloid isoform Aß42. Remarkably, BIM-BH3 modulated the structure, fibrillation pathway, aggregate morphology, and membrane interactions of Aß42. In particular, BIM-BH3 inhibited Aß42 fibril-formation, while it simultaneously enhanced protofibril assembly. Furthermore, we discovered that BIM-BH3/Aß42 interactions induced cell death in a human neuroblastoma cell model. Overall, our data provide a crucial mechanistic link accounting for neuronal cell death in Alzheimer's disease patients and the participation of both BIM and Aß42 in the neurotoxicity process.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteína 11 Similar a Bcl2/metabolismo , Muerte Celular/fisiología , Neuronas/metabolismo , Enfermedad de Alzheimer/patología , Apoptosis/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Neuronas/patología , Unión Proteica , Conformación Proteica
8.
Stem Cell Reports ; 8(1): 163-176, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28041879

RESUMEN

Hematopoietic stem cells (HSCs) are rare cells that generate all the various types of blood and immune cells. High-quality transcriptome data have enabled the identification of significant genes for HSCs. However, most genes are expressed in various forms by alternative splicing (AS), extending transcriptome complexity. Here, we delineate AS to determine which isoforms are expressed in mouse HSCs. Our analysis of microarray and RNA-sequencing data includes differential expression of splicing factors that may regulate AS, and a complete map of splicing isoforms. Multiple types of isoforms for known HSC genes and unannotated splicing that may alter gene function are presented. Transcriptome-wide identification of genes and their respective isoforms in mouse HSCs will open another dimension for adult stem cells.


Asunto(s)
Empalme Alternativo , Células Madre Hematopoyéticas/metabolismo , Transcriptoma , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Proteínas de Unión al ADN/genética , Exones , Perfilación de la Expresión Génica , Ontología de Genes , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/genética , Intrones , Ratones , Fenotipo , Factores de Transcripción/genética , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...