Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement (Amst) ; 16(2): e12589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666085

RESUMEN

INTRODUCTION: Soluble amyloid beta (Aß) oligomers have been suggested as initiating Aß related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS: A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aß and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS: Across groups, highest Aß oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aß oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE Îµ4 allele carriers showed significantly higher Aß oligomer levels. No differences in tau oligomers were detected. DISCUSSION: The accumulation of Aß oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aß oligomers might have the highest therapeutic effect in these disease stages. Highlights: Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aß oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAß oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aß oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.

2.
Heliyon ; 9(8): e18443, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37609390

RESUMEN

Disease-modifying therapies to treat Alzheimer's disease (AD) are of fundamental interest for aging humans, societies, and health care systems. Predictable disease progression in transgenic AD models favors preclinical studies employing a preventive study design with an early pre-symptomatic treatment start, instead of assessing a truly curative approach with treatment starting after diagnosed disease onset. The aim of this study was to investigate the pharmacokinetic profile and efficacy of RD2 to enhance short-term memory and cognition in cognitively impaired aged Beagle dogs - a non-transgenic model of truly sporadic AD. RD2 has previously demonstrated pharmacodynamic efficacy in three different transgenic AD mouse models in three different laboratories. Here, we demonstrate that oral treatment with RD2 significantly reduced cognitive deficits in cognitively impaired aged Beagle dogs even beyond the treatment end, which suggests in combination with the treatment dependent CSF tau oligomer decrease a disease-modifying effect of RD2 treatment.

3.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37238187

RESUMEN

Protein misfolding and aggregation are pathological hallmarks of various neurodegenerative diseases. In Alzheimer's disease (AD), soluble and toxic amyloid-ß (Aß) oligomers are biomarker candidates for diagnostics and drug development. However, accurate quantification of Aß oligomers in bodily fluids is challenging because extreme sensitivity and specificity are required. We previously introduced surface-based fluorescence intensity distribution analysis (sFIDA) with single-particle sensitivity. In this report, a preparation protocol for a synthetic Aß oligomer sample was developed. This sample was used for internal quality control (IQC) to improve standardization, quality assurance, and routine application of oligomer-based diagnostic methods. We established an aggregation protocol for Aß1-42, characterized the oligomers by atomic force microscopy (AFM), and assessed their application in sFIDA. Globular-shaped oligomers with a median size of 2.67 nm were detected by AFM, and sFIDA analysis of the Aß1-42 oligomers yielded a femtomolar detection limit with high assay selectivity and dilution linearity over 5 log units. Lastly, we implemented a Shewhart chart for monitoring IQC performance over time, which is another important step toward quality assurance of oligomer-based diagnostic methods.

4.
NPJ Parkinsons Dis ; 9(1): 14, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732520

RESUMEN

Misfolded and aggregated α-synuclein is a neuropathological hallmark of Parkinson's disease (PD). Thus, α-synuclein aggregates are regarded as a biomarker for the development of diagnostic assays. Quantification of α-synuclein aggregates in body fluids is challenging, and requires highly sensitive and specific assays. Recent studies suggest that α-synuclein aggregates may be shed into stool. We used surface-based fluorescence intensity distribution analysis (sFIDA) to detect and quantify single particles of α-synuclein aggregates in stool of 94 PD patients, 72 isolated rapid eye movement sleep behavior disorder (iRBD) patients, and 51 healthy controls. We measured significantly elevated concentrations of α-synuclein aggregates in stool of iRBD patients versus those of controls (p = 0.024) or PD patients (p < 0.001). Our results show that α-synuclein aggregates are excreted in stool and can be measured using the sFIDA assay, which could support the diagnosis of prodromal synucleinopathies.

5.
NPJ Parkinsons Dis ; 8(1): 68, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655068

RESUMEN

The pathological hallmark of neurodegenerative diseases is the formation of toxic oligomers by proteins such as alpha-synuclein (aSyn) or microtubule-associated protein tau (Tau). Consequently, such oligomers are promising biomarker candidates for diagnostics as well as drug development. However, measuring oligomers and other aggregates in human biofluids is still challenging as extreme sensitivity and specificity are required. We previously developed surface-based fluorescence intensity distribution analysis (sFIDA) featuring single-particle sensitivity and absolute specificity for aggregates. In this work, we measured aSyn and Tau aggregate concentrations of 237 cerebrospinal fluid (CSF) samples from five cohorts: Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and a neurologically-normal control group. aSyn aggregate concentration discriminates PD and DLB patients from normal controls (sensitivity 73%, specificity 65%, area under the receiver operating curve (AUC) 0.68). Tau aggregates were significantly elevated in PSP patients compared to all other groups (sensitivity 87%, specificity 70%, AUC 0.76). Further, we found a tight correlation between aSyn and Tau aggregate titers among all patient cohorts (Pearson coefficient of correlation r = 0.81). Our results demonstrate that aSyn and Tau aggregate concentrations measured by sFIDA differentiate neurodegenerative disease diagnostic groups. Moreover, sFIDA-based Tau aggregate measurements might be particularly useful in distinguishing PSP from other parkinsonisms. Finally, our findings suggest that sFIDA can improve pre-clinical and clinical studies by identifying those individuals that will most likely respond to compounds designed to eliminate specific oligomers or to prevent their formation.

6.
Cell Rep Med ; 3(5): 100630, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584626

RESUMEN

The elimination of amyloid beta (Aß) oligomers is a promising strategy for therapeutic drug development of Alzheimer's disease (AD). AD mouse models that develop Aß pathology have been used to demonstrate in vivo efficacy of compounds that later failed in clinical development. Here, we analyze the concentration and size distribution of Aß oligomers in different transgenic mouse models of AD and in human brain samples by surface-based fluorescence intensity distribution analysis (sFIDA), a highly sensitive method for detecting and quantitating protein aggregates. We demonstrate dose- and time-dependent oligomer elimination by the compound RD2 in mouse and human AD brain homogenates as sources of native Aß oligomers. Such ex vivo target engagement analyses with mouse- and human-brain-derived oligomers have the potential to enhance the translational value from pre-clinical proof-of-concept studies to clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos
7.
Clin Chim Acta ; 466: 152-159, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28088342

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by symptoms such as rigor, tremor and bradykinesia. A reliable and early diagnosis could improve the development of early therapeutic strategies before death of dopaminergic neurons leads to the first clinical symptoms. The sFIDA (surface-based fluorescence intensity distribution analysis) assay is a highly sensitive method to determine the concentration of α-synuclein (α-syn) oligomers which are presumably the major toxic isoform of α-syn and potentially the most direct biomarker for PD. Oligomer-based diagnostic tests require standard molecules that closely mimic the native oligomer. This is particularly important for calibration and assessment of inter-assay variation. In this study, we generated a standard in form of α-syn coated silica nanoparticles (α-syn-SiNaPs) that are in the size range of α-syn oligomers and provide a defined number of α-syn epitopes. The preparation of the sFIDA assay was realized on an automated platform to allow handling of high number of samples and reduce the effects of human error. The assay outcome was analyzed by determination of coefficient of variation and linearity for the applied α-syn-SiNaPs concentrations. Additionally, the limit of detection and lower limit of quantification were determined yielding concentrations in the lower femtomolar range.


Asunto(s)
Pruebas Inmunológicas/métodos , Nanopartículas/normas , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/inmunología , Biomarcadores/análisis , Calibración , Epítopos/análisis , Humanos , Pruebas Inmunológicas/normas , Límite de Detección , Imitación Molecular/inmunología , Nanopartículas/química , Multimerización de Proteína/inmunología , Silicio , alfa-Sinucleína/análisis
8.
Biol Chem ; 398(4): 465-475, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27811340

RESUMEN

Early diagnostics at the preclinical stage of Alzheimer's disease is of utmost importance for drug development in clinical trials and prognostic guidance. Since soluble Aß oligomers are considered to play a crucial role in the disease pathogenesis, several methods aim to quantify Aß oligomers in body fluids such as cerebrospinal fluid (CSF) and blood plasma. The highly specific and sensitive method surface-based fluorescence intensity distribution analysis (sFIDA) has successfully been established for oligomer quantitation in CSF samples. In our study, we explored the sFIDA method for quantitative measurements of synthetic Aß particles in blood plasma. For this purpose, EDTA-, citrate- and heparin-treated blood plasma samples from five individual donors were spiked with Aß coated silica nanoparticles (Aß-SiNaPs) and were applied to the sFIDA assay. Based on the assay parameters linearity, coefficient of variation and limit of detection, we found that EDTA plasma yields the most suitable parameter values for quantitation of Aß oligomers in sFIDA assay with a limit of detection of 16 fM.


Asunto(s)
Péptidos beta-Amiloides/sangre , Anticoagulantes/química , Análisis Químico de la Sangre/métodos , Enfermedad de Alzheimer/diagnóstico , Fluorescencia , Humanos , Estándares de Referencia
9.
Clin Biochem ; 50(4-5): 244-247, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27823959

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is a neurodegenerative disorder with yet non-existent therapeutic and limited diagnostic options. Reliable biomarker-based AD diagnostics are of utmost importance for the development and application of therapeutic substances. We have previously introduced a platform technology designated 'sFIDA' for the quantitation of amyloid ß peptide (Aß) aggregates as AD biomarker. In this study we implemented the sFIDA assay on an automated platform to enhance robustness and performance of the assay. DESIGN AND METHODS: In sFIDA (surface-based fluorescence intensity distribution analysis) Aß species are immobilized by a capture antibody to a glass surface. Aß aggregates are then multiply loaded with fluorescent antibodies and quantitated by high resolution fluorescence microscopy. As a model system for Aß aggregates, we used Aß-conjugated silica nanoparticles (Aß-SiNaPs) diluted in PBS buffer and cerebrospinal fluid, respectively. Automation of the assay was realized on a liquid handling system in combination with a microplate washer. RESULTS: The automation of the sFIDA assay results in improved intra-assay precision, linearity and sensitivity in comparison to the manual application, and achieved a limit of detection in the sub-femtomolar range. CONCLUSIONS: Automation improves the precision and sensitivity of the sFIDA assay, which is a prerequisite for high-throughput measurements and future application of the technology in routine AD diagnostics.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Líquidos Corporales/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Límite de Detección , Agregado de Proteínas , Robótica , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...