Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5237, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898005

RESUMEN

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Neoplasias Ováricas , Empalmosomas , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Empalmosomas/metabolismo , Cisplatino/farmacología , Línea Celular Tumoral , Animales , Ratones , Vesículas Extracelulares/metabolismo , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , Reparación del ADN
2.
J Med Microbiol ; 71(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35037614

RESUMEN

Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes. It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517-622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection.Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division.Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms.Methodology. LC-MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer.Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC-MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis.Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.


Asunto(s)
Mycoplasma hominis , Proteoma , Timidina/metabolismo , Arginina , Humanos , Infecciones por Mycoplasma , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Fenotipo , Fosfatos , Ribonucleósidos
3.
Data Brief ; 39: 107658, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917708

RESUMEN

Human multiforme glioblastoma is characterized by an unfavorable prognosis, low survival rate and extremely limited possibilities for therapy. Rat C6 glioma is an experimental model for the study of glioblastoma growth and invasion. It has been shown that the growth and development of the tumor is accompanied by changes in the surrounding normotypic tissues [1]. These changes create a favorable environment for the development of the tumor and give it an evolutionary advantage [2]. Description of changes occurring in normotypic cells of the body upon their contact with tumor cells is of great interest. We have grown C6 glioma cells and rat astrocytes, as well as astrocyte cells co-cultured together with C6 glioma. We performed proteome-wide LC-MS analysis of these experimental groups. The data includes LC-MS/MS raw files and exported MaxQuant and ProteinPilot search results with fasta. Dataset published in the PRIDE repository project accession PXD026776.

4.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181282

RESUMEN

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Asunto(s)
Antibacterianos/farmacología , Cumarinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Metabolómica/métodos , Animales , Antibacterianos/metabolismo , Bacillus pumilus/efectos de los fármacos , Bacillus pumilus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cumarinas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Farmacorresistencia Bacteriana/fisiología , Microbioma Gastrointestinal/fisiología , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Dispositivos Laboratorio en un Chip , Proteómica/métodos , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Análisis de la Célula Individual/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Ursidae/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...