Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 12(4)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35453991

RESUMEN

The radiothermometry (RTM) study of a cytochrome-containing system (CYP102 A1) has been conducted in order to demonstrate the applicability of RTM for monitoring changes in the functional activity of an enzyme in case of its point mutation. The study has been performed with the example of the wild-type cytochrome (WT) and its mutant type A264K. CYP102 A1 is a nanoscale protein-enzymatic system of about 10 nm in size. RTM uses a radio detector and can record the corresponding brightness temperature (Tbr) of the nanoscale enzyme solution within the 3.4-4.2 GHz frequency range during enzyme functioning. It was found that the enzymatic reaction during the lauric acid hydroxylation at the wild-type CYP102 A1 (WT) concentration of ~10-9 M is accompanied by Tbr fluctuations of ~0.5-1 °C. At the same time, no Tbr fluctuations are observed for the mutated forms of the enzyme CYP102 A1 (A264K), where one amino acid was replaced. We know that the activity of CYP102 A1 (WT) is ~4 orders of magnitude higher than that of CYP102 A1 (A264K). We therefore concluded that the disappearance of the fluctuation of Tbr CYP102 A1 (A264K) is associated with a decrease in the activity of the enzyme. This effect can be used to develop new methods for testing the activity of the enzyme that do not require additional labels and expensive equipment, in comparison with calorimetry and spectral methods. The RTM is beginning to find application in the diagnosis of oncological diseases and for the analysis of biochemical processes.

2.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642632

RESUMEN

This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Proteoma/química , Imagen Individual de Molécula/métodos , Animales , Humanos
3.
Int J Nanomedicine ; 9: 4659-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25336946

RESUMEN

Atomic force microscopy (AFM) was applied to carry out direct and label-free detection of gp120 human immunodeficiency virus type 1 envelope glycoprotein as a target protein. This approach was based on the AFM fishing of gp120 from the analyte solution using anti-gp120 aptamers immobilized on the AFM chip to count gp120/aptamer complexes that were formed on the chip surface. The comparison of image contrasts of fished gp120 against the background of immobilized aptamers and anti-gp120 antibodies on the AFM images was conducted. It was shown that an image contrast of the protein/aptamer complexes was two-fold higher than the contrast of the protein/antibody complexes. Mass spectrometry identification provided an additional confirmation of the target protein presence on the AFM chips after biospecific fishing to avoid any artifacts.


Asunto(s)
Aptámeros de Nucleótidos/química , Proteína gp120 de Envoltorio del VIH/análisis , Proteína gp120 de Envoltorio del VIH/química , Ácidos Nucleicos Inmovilizados/química , Espectrometría de Masas/métodos , Microscopía de Fuerza Atómica/métodos , Técnicas de Sonda Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...