Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Data Brief ; 39: 107626, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34877389

RESUMEN

Post-synthesis treatment of bimetallic catalysts in different gas phases resulting in the adsorption-induced segregation is among promising approaches to enhance their activity not compromising selectivity towards a number of low-temperature reactions. Our recently published paper (M.A. Panafidin, A.V. Bukhtiyarov, I.P. Prosvirin, I.A. Chetyrin, A.Yu. Klyushin, A. Knop-Gericke, N.S. Smirnova, P.V. Markov, I.S. Mashkovsky, Y.V. Zubavichus, A.Yu. Stakheev, V.I. Bukhtiyarov, A mild post-synthesis oxidative treatment of Pd-In/HOPG bimetallic catalysts as a tool of their surface structure fine tuning. Appl. Surf. Sci.) reports on Pd-In intermetallic formation regularities and their evolution after storage in air as well as during treatment in oxygen at submillibar pressures. The current paper gives an extended representation of experimental ex situ/in situ synchrotron-based photoelectron spectroscopy (SRPES) and scanning tunnelling microscopy (STM) data used to derive scientific conclusions in the paper quoted above.

2.
Faraday Discuss ; 208(0): 255-268, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29877526

RESUMEN

Model bimetallic Pd-Au/HOPG catalysts have been investigated in the CO oxidation reaction using a combination of NAP XPS and MS techniques. The samples have shown catalytic activity at temperatures above 150 °C. The redistribution of Au and Pd on the surface depending on the reaction conditions has been demonstrated using NAP XPS. The Pd enrichment of the bimetallic particles' surface under reaction gas mixture has been shown. Apparently, CO adsorption induces Pd segregation on the surface. Heating the sample under reaction conditions above 150 °C decomposes the Pd-CO state due to CO desorption and reaction and simultaneous Pd-Au alloy formation on the surface takes place. Cooling back down to RT results in reversible Pd segregation due to Pd-CO formation and the sample becomes inactive. It has been shown that in situ studies are necessary for investigation of the active sites in Pd-Au bimetallic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA