Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 20019, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26883577

RESUMEN

In Friedreich's ataxia (FRDA) patients, diminished frataxin (FXN) in sensory neurons is thought to yield the predominant pathology associated with disease. In this study, we demonstrate successful usage of RNA transcript therapy (RTT) as an exogenous human FXN supplementation strategy in vitro and in vivo, specifically to dorsal root ganglia (DRG). Initially, 293 T cells were transfected with codon optimized human FXN mRNA, which was translated to yield FXN protein. Importantly, FXN was rapidly processed into the mature functional form of FXN (mFXN). Next, FXN mRNA, in the form of lipid nanoparticles (LNPs), was administered intravenously in adult mice. Examination of liver homogenates demonstrated efficient FXN LNP uptake in hepatocytes and revealed that the mitochondrial maturation machinery had efficiently processed all FXN protein to mFXN in ~24 h in vivo. Remarkably, greater than 50% mFXN protein derived from LNPs was detected seven days after intravenous administration of FXN LNPs, suggesting that the half-life of mFXN in vivo exceeds one week. Moreover, when FXN LNPs were delivered by intrathecal administration, we detected recombinant human FXN protein in DRG. These observations provide the first demonstration that RTT can be used for the delivery of therapeutic mRNA to DRG.


Asunto(s)
Ataxia de Friedreich/genética , Ganglios Espinales/metabolismo , Proteínas de Unión a Hierro/genética , Lípidos , Nanopartículas , ARN Mensajero , Animales , Modelos Animales de Enfermedad , Femenino , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/terapia , Expresión Génica , Genes Reporteros , Humanos , Inyecciones Espinales , Proteínas de Unión a Hierro/metabolismo , Lípidos/química , Hígado/metabolismo , Mediciones Luminiscentes , Ratones , Imagen Molecular , Nanopartículas/administración & dosificación , Nanopartículas/química , Biosíntesis de Proteínas , ARN Mensajero/administración & dosificación , ARN Mensajero/química , Transducción de Señal , Transfección , Frataxina
2.
Neurol Ther ; 5(1): 1-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26894299

RESUMEN

Transthyretin (TTR) transports the retinol-binding protein-vitamin A complex and is a minor transporter of thyroxine in blood. Its tetrameric structure undergoes rate-limiting dissociation and monomer misfolding, enabling TTR to aggregate or to become amyloidogenic. Mutations in the TTR gene generally destabilize the tetramer and/or accelerate tetramer dissociation, promoting amyloidogenesis. TTR-related amyloidoses are rare, fatal, protein-misfolding disorders, characterized by formation of soluble aggregates of variable structure and tissue deposition of amyloid. The TTR amyloidoses present with a spectrum of manifestations, encompassing progressive neuropathy and/or cardiomyopathy. Until recently, the only accepted treatment to halt progression of hereditary TTR amyloidosis was liver transplantation, which replaces the hepatic source of mutant TTR with the less amyloidogenic wild-type TTR. Tafamidis meglumine is a rationally designed, non-NSAID benzoxazole derivative that binds with high affinity and selectivity to TTR and kinetically stabilizes the tetramer, slowing monomer formation, misfolding, and amyloidogenesis. Tafamidis is the first pharmacotherapy approved to slow the progression of peripheral neurologic impairment in TTR familial amyloid polyneuropathy. Here we describe the mechanism of action of tafamidis and review the clinical data, demonstrating that tafamidis treatment slows neurologic deterioration and preserves nutritional status, as well as quality of life in patients with early-stage Val30Met amyloidosis.

3.
Sci Rep ; 5: 18251, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26671574

RESUMEN

Friedreich's Ataxia is a genetic disease caused by expansion of an intronic trinucleotide repeat in the frataxin (FXN) gene yielding diminished FXN expression and consequently disease. Since increasing FXN protein levels is desirable to ameliorate pathology, we explored the role of major cellular proteostasis pathways and mitochondrial proteases in FXN processing and turnover. We targeted p97/VCP, the ubiquitin proteasome pathway (UPP), and autophagy with chemical inhibitors in cell lines and patient-derived cells. p97 inhibition by DBeQ increased precursor FXN levels, while UPP and autophagic flux modulators had variable effects predominantly on intermediate FXN. Our data suggest that these pathways cannot be modulated to influence mature functional FXN levels. We also targeted known mitochondrial proteases by RNA interference and discovered a novel protease PITRM1 that regulates intermediate FXN levels. Treatment with the aforementioned chemical and genetic modulators did not have a differential effect in patient cells containing lower amounts of FXN. Interestingly, a number of treatments caused a change in total amount of FXN protein, without an effect on mature FXN. Our results imply that regulation of FXN protein levels is complex and that total amounts can be modulated chemically and genetically without altering the absolute amount of mature FXN protein.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transducción de Señal , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteolisis , Quinazolinas/farmacología , Expansión de Repetición de Trinucleótido , Ubiquitina/metabolismo , Proteína que Contiene Valosina , Frataxina
4.
Proc Natl Acad Sci U S A ; 109(24): 9629-34, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22645360

RESUMEN

The transthyretin amyloidoses (ATTR) are invariably fatal diseases characterized by progressive neuropathy and/or cardiomyopathy. ATTR are caused by aggregation of transthyretin (TTR), a natively tetrameric protein involved in the transport of thyroxine and the vitamin A-retinol-binding protein complex. Mutations within TTR that cause autosomal dominant forms of disease facilitate tetramer dissociation, monomer misfolding, and aggregation, although wild-type TTR can also form amyloid fibrils in elderly patients. Because tetramer dissociation is the rate-limiting step in TTR amyloidogenesis, targeted therapies have focused on small molecules that kinetically stabilize the tetramer, inhibiting TTR amyloid fibril formation. One such compound, tafamidis meglumine (Fx-1006A), has recently completed Phase II/III trials for the treatment of Transthyretin Type Familial Amyloid Polyneuropathy (TTR-FAP) and demonstrated a slowing of disease progression in patients heterozygous for the V30M TTR mutation. Herein we describe the molecular and structural basis of TTR tetramer stabilization by tafamidis. Tafamidis binds selectively and with negative cooperativity (K(d)s ~2 nM and ~200 nM) to the two normally unoccupied thyroxine-binding sites of the tetramer, and kinetically stabilizes TTR. Patient-derived amyloidogenic variants of TTR, including kinetically and thermodynamically less stable mutants, are also stabilized by tafamidis binding. The crystal structure of tafamidis-bound TTR suggests that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.


Asunto(s)
Amiloide/antagonistas & inhibidores , Benzoxazoles/farmacología , Prealbúmina/metabolismo , Sitios de Unión , Humanos , Cinética , Modelos Moleculares
5.
Methods Enzymol ; 439: 339-51, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18374176

RESUMEN

Recent studies implicate a disruption in Rab-mediated protein trafficking as a possible contributing factor to neurodegeneration in Parkinson's disease (PD). Misfolding of the neuronal protein alpha-synuclein (asyn) is implicated in PD. Overexpression of asyn results in cell death in a wide variety of model systems, and in several organisms, including yeast, worms, flies, and rodent primary neurons, this toxicity is suppressed by the overproduction of Rab proteins. These and other findings suggest that asyn interferes with Rab function and provide new avenues for PD drug discovery. This chapter describes two assay formats that have been used successfully to identify small molecules that rescue asyn toxicity in yeast. The 96-well format monitors rescue by optical density and is suitable for screening thousands of compounds. A second format measures viable cells by reduction of the dye alamarBlue, a readout that is compatible with 96-, 384-, and 1536-well plates allowing the screening of large libraries (>100,000 compounds). A secondary assay to eliminate mechanistically undesirable hits is also described.


Asunto(s)
Saccharomyces cerevisiae/efectos de los fármacos , alfa-Sinucleína/toxicidad , Proteínas de Unión al GTP rab/toxicidad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Enfermedad de Parkinson/tratamiento farmacológico
6.
Mol Cancer Ther ; 3(1): 47-58, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14749475

RESUMEN

MLN944 (XR5944) is a novel bis-phenazine that has demonstrated exceptional efficacy against a number of murine and human tumor models. The drug was reported originally as a dual topoisomerase I/II poison, but a precise mechanism of action for this compound remains to be determined. Several lines of evidence, including the marginal ability of MLN944 to stabilize topoisomerase-dependent cleavage, and the sustained potency of MLN944 in mammalian cells with reduced levels of both topoisomerases, suggest that other activities of the drug exist. In this study, we show that MLN944 intercalates into DNA, but has no effect on the catalytic activity of either topoisomerase I or II. MLN944 displays no significant ability to stimulate DNA scission mediated by either topoisomerase I or II compared with camptothecin or etoposide, respectively. In addition, yeast genetic models also point toward a topoisomerase-independent mechanism of action. To examine cell cycle effects, synchronized human HCT116 cells were treated with MLN944, doxorubicin, camptothecin, or a combination of the latter two to mimic a dual topoisomerase poison. MLN944 treatment was found to induce a G(1) and G(2) arrest in cells that is unlike the typical G(2)-M arrest noted with known topoisomerase poisons. Finally, transcriptional profiling analysis of xenograft tumors treated with MLN944 revealed clusters of regulated genes distinct from those observed in irinotecan hydrochloride (CPT-11)-treated tumors. Taken together, these findings suggest that the primary mechanism of action of MLN944 likely involves DNA binding and intercalation, but does not appear to involve topoisomerase inhibition.


Asunto(s)
Camptotecina/análogos & derivados , Sustancias Intercalantes/farmacología , Fenazinas/farmacología , Animales , Antígenos de Neoplasias , Camptotecina/farmacología , Catálisis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Análisis por Conglomerados , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN , Relación Dosis-Respuesta a Droga , Fase G1/efectos de los fármacos , Fase G2/efectos de los fármacos , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Sustancias Intercalantes/química , Irinotecán , Masculino , Ratones , Ratones Desnudos , Mitosis/efectos de los fármacos , Mutación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Fenazinas/química , Trasplante Heterólogo , Ensayos Antitumor por Modelo de Xenoinjerto , Levaduras/efectos de los fármacos , Levaduras/enzimología , Levaduras/genética
7.
Eukaryot Cell ; 2(2): 256-64, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12684375

RESUMEN

A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.


Asunto(s)
Antifúngicos/farmacología , Inhibidores Enzimáticos/farmacología , ARN Polimerasa III/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Candida albicans/genética , Células Cultivadas , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica/genética , Humanos , Datos de Secuencia Molecular , Peso Molecular , Mutación/genética , Subunidades de Proteína/genética , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/biosíntesis , ARN de Transferencia/genética , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
8.
Proc Natl Acad Sci U S A ; 99(3): 1461-6, 2002 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-11830665

RESUMEN

Although the biochemical targets of most drugs are known, the biological consequences of their actions are typically less well understood. In this study, we have used two whole-genome technologies in Saccharomyces cerevisiae to determine the cellular impact of the proteasome inhibitor PS-341. By combining population genomics, the screening of a comprehensive panel of bar-coded mutant strains, and transcript profiling, we have identified the genes and pathways most affected by proteasome inhibition. Many of these function in regulated protein degradation or a subset of mitotic activities. In addition, we identified Rpn4p as the transcription factor most responsible for the cell's ability to compensate for proteasome inhibition. Used together, these complementary technologies provide a general and powerful means to elucidate the cellular ramifications of drug treatment.


Asunto(s)
Ácidos Borónicos/farmacología , Cisteína Endopeptidasas/metabolismo , Genoma Fúngico , Genómica/métodos , Complejos Multienzimáticos/metabolismo , Inhibidores de Proteasas/farmacología , Pirazinas/farmacología , Saccharomyces cerevisiae/genética , Bortezomib , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Reparación del ADN , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo de la Endopetidasa Proteasomal , ARN de Hongos/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...