Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rec ; 24(4): e202400006, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530037

RESUMEN

Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.


Asunto(s)
Enfermedades Transmisibles , Nanodiamantes , Vacunas , Humanos , Nanodiamantes/química , Sistemas de Liberación de Medicamentos , Propiedades de Superficie
2.
RSC Adv ; 12(49): 31639-31649, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36380953

RESUMEN

The new objective of sustainable analytical chemistry is to develop validated robust, swift, simple and highly sensitive analytical methods that are based on cost effective sensing technology. Therefore, in this study the electro-chemical detection of coenzyme Q10 (CoQ10) was achieved using a fluorene intercalated graphene oxide based CoQ10 imprinted polymer composite modified glassy carbon electrode (CoQ10-IGOPC/GCE). The synthesized sensing material was characterized using SEM, XRD and FT-IR to determine the morphology and functional properties. The CoQ10-IGOPC/GCE was characterized by EIS for its electrochemical properties. CoQ10 was detected selectively using Differential Pulse Voltammetry (DPV). Under ideal circumstances, a linear calibration curve with a correlation coefficient (R 2) of 0.991 was produced in the concentration range of 0.0967 to 28.7 µM. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029 and 0.0967 µM, respectively. Furthermore, the proposed electrochemical sensor was extremely selective, accurate and thoroughly validated with RSD values less than 5%. The developed CoQ10-IGOPC/GCE based electrochemical sensor was successfully used for the detection of CoQ10 in samples of fruits, vegetables, nuts, human blood serum and pharmaceuticals. The CoQ10-IGOPC/GCE based electrochemical method showed good percent recoveries ranging from 94 to 103 percent.

3.
Food Chem Toxicol ; 165: 113177, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643230

RESUMEN

The recent studies evaluated the extensive exploitation of azo dyes as food colorant to improve the texture of food to turn the food to be very attractive. The heavy consumption of the food colorants by the food industries in commonly consumed beverages especially in the soft drinks may become the cause of certain suspected diseases. Amaranth is an azo dye which easily cleaved into amines and is suspected to be mutagen and carcinogen. Thus, the quantification of amaranth through reliable and sensitive sensor is of great importance. The SnO2/rGO nanocomposite has been engineered to be utilized as chemically modified sensor for the low-level quantification of amaranth in soft drinks and water sample. The fabricated nanocomposite materials was characterized through XRD, FTIR, raman and TEM tools which revealed average crystalline size of 23.7 nm, different surface functionalities and internal rectangle shaped morphology. The engineered nanocomposite was electrochemically characterized through electrochemical impedance spectroscopy (EIS) and Tafel plot to evaluate the electrocatalytic properties and charger transfer kinetics of SnO2/rGO/Nafion/GCE. The resistance of bare, GO/GCE and SnO2/rGO/Nafion/GCE was calculated as 812.5 Ω, 1343 Ω and 338 Ω. Certain parameters were optimized such as PBS electrolyte pH 6, scan rate 130 mV/s and potential window (0.4-1.2 V) to carry out sensitive and fluent determination process of amaranth azo dye. For the effectiveness of proposed sensor two calibration ranges were optimized from 1 to 800 nM and 1-60 µM. The LOD for both ranges were calculated as 0.68 nM and 0.0027 µM. Moreover, the anti-interference and stability profile of developed sensor were found phenomenal that suggest the exceptional electrocatalytic performance of SnO2/rGO/Nafion/GCE for amaranth.


Asunto(s)
Grafito , Nanocompuestos , Colorante de Amaranto , Compuestos Azo , Bebidas Gaseosas , Técnicas Electroquímicas/métodos , Grafito/química , Nanocompuestos/química , Compuestos de Estaño
4.
Chemosphere ; 303(Pt 3): 135270, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35688198

RESUMEN

The pharmaceutical science demand for sustainable and selective electrochemical sensors which exhibit ultrasensitive capabilities for the monitoring of different drugs. In an attempt to build a useful electrochemical sensor, we describe a most efficient method for the fabrication of NiO/ZnO nanocomposite through aqueous chemical growth method. The successfully synthesized NiO/ZnO nanocomposite is successfully employed to modify a glassy carbon electrode in order to build a sensitive and reliable electrochemical sensor for the detection of carbamazepine (CBZ), an anticonvulsant drug. The morphological texture, functionalities and crystalline structure of prepared nanocomposite were determined via FTIR, XRD, EDX, TEM, and SEM analysis. In order to examine the charge transfer kinetics, the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to exploit the electrochemical properties of the synthesized nanocomposite. The NiO/ZnO nanocomposite exhibited excellent electron transfer kinetics and less resistive behavior than the individual NiO and ZnO nanoparticles. The differential pulse voltammetry and cyclic voltammetry tools were used for the fluent determination of CBZ. Certain parameters were optimized to develop an effective method including optimum scan rate 60 mV/s, potential range from 0.4 to 1.4 V and BRB as supporting electrolyte with pH 3. The developed sensor showed exceptional response for CBZ under the linear dynamic range from 5 to 100 µM. The limit of detection of proposed NiO/ZnO sensor for the CBZ was calculated to be 0.08 µM. The analytical approach of prepared electrochemical sensor was investigated in different pharmaceutical formulation with acceptable percent recoveries ranging from 96.7 to 98.6%.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Carbamazepina/análisis , Técnicas Electroquímicas/métodos , Electrodos , Nanocompuestos/química , Óxido de Zinc/química
5.
Chemosphere ; 303(Pt 3): 135170, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35640684

RESUMEN

Over the past few decades, phenolic compounds have been broadly exploited in the industries to be utilized in several applications including polycarbonate plastic, food containers, epoxy resins, etc. One of the major compounds in phenolics is Bisphenol-S (BPS) which has dominantly replaced Bisphenol-A in several applications. Phenolic compounds are extensively drained into the environment without proper treatment and cause several health hazards. Thus, to tackle this serious problem an electrochemical sensor based on SnO2/GCE has been successfully engineered to monitor the low-level concentration of BPS in water samples. The fabrication of SnO2 nanoparticles (SnO2 NPs) was confirmed through FTIR, XRD, and TEM to examine the size, crystallinity, internal texture, and functionalities of the prepared material. The fabricated material was exploited as a chemically modified sensor for the determination of BPS in water samples collected from different sources. Under optimal conditions such as scan sweep 100 mV/s, PBS electrolyte pH of 6, potential window (0.3-1.3 V), the proposed sensor manifested an excellent response for BPS. The LOD of the present method for BPS was calculated as 0.007 µM, respectively. Moreover, the stability and selectivity profile of SnO2/GCE for BPS in the real matrix was examined to be outstanding.


Asunto(s)
Técnicas Electroquímicas , Contaminación Ambiental , Técnicas Electroquímicas/métodos , Electrodos , Polímeros de Fluorocarbono , Límite de Detección , Compuestos de Estaño , Agua
6.
Chemosphere ; 300: 134634, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35439494

RESUMEN

The drastic increases in the concentration of heavy metals ions in the environment have become a serious concern for a number of years. Heavy metals pose serious impacts on human and aquatic life and cause severe health hazards. Amongst heavy metals, cadmium is known for its lethal effects on human health as it easily reacts with enzymes and creates free radicals in the biological system that causes carcinogenicity and other serious diseases. Thus, to tackle this challenge, TX-100 SnO2 nanoparticles based chemically modified sensor is introduced to assess the quantity of Cd+2 in the water system. The engineered SnO2 nanoparticles were electrochemically characterized through cyclic voltammetry and electrochemical impedance spectroscopy to ensure the better charge transfer kinetics and electrocatalytic properties of fabricated sensors. Under the optimized conditions e.g., scan rate 80 mV/s, PBS electrolyte pH 7, and potential window (-0.2 to -1.4 V), the engineered TX-100/SnO2/GCE-based sensor manifested a phenomenal response for cadmium ions in water media. The LOD and LOQ of developed TX-100/SnO2/GCE were calculated in the nanomolar range as 0.0084 nM and 0.27 nM. The recovery values of the proposed method for Cd+2 were found in an acceptable limit that witnesses the effectiveness of the fabricated sensor. Moreover, the excellent stability and anti-interference behavior of the sensor highlights its dynamic profile to be commercially utilized for the determination of Cd+2 ions in water bodies.


Asunto(s)
Metales Pesados , Nanopartículas , Cadmio , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Nanopartículas/química , Octoxinol , Agua
7.
Food Chem Toxicol ; 161: 112843, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35101578

RESUMEN

The extensive use of pesticides for better yield of crops have become major human concern over the decades. Pesticides are widely used in the fields to kill weeds and pests on the vegetable and crops to improve the quality and yield of the food knowing the fact that pesticides residue in food are very lethal for human being. Amongst, the hazardous pesticides, mancozeb is widely applied in the protection of crops. Thus the quantification of mancozeb residue is of great importance. This study reports the electrochemical monitoring of mancozeb through tungsten oxide reduced graphene oxide (WO3/rGO) nanocomposite. The engineered nanocomposite was characterized though different analytical tools such as FTIR, XRD and TEM to examine crystallinity, internal texture and the size. The FTIR result confirm the functionalities of GO and WO3/rGO nanocomposite in finger print and functional group region. Through XRD analysis, the size of the WO3/rGO nanocomposite was calculated as 31.6 nm. While the TEM analysis was also exploited to examine the 2D texture of GO and nanometric size of the WO3/rGO. To ensure the conductive nature of the WO3/rGO nanocomposite, the glassy carbon electrode was modified and exploited for cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimal conditions, the modified sensor showed exceptional response for mancozeb. The linear dynamic range was set from 0.05 to 70 µM in BRB buffer of pH 4. The LOD and LOQ for proposed method was calculated as 0.0038 and 0.0115 µM. The analytical applicability of chemically modified sensor was investigated in real matrix of different vegetable samples and the recovery values were observed in acceptable range. The electrochemical examination of present work reveals that WO3/rGO nanocomposite can be an exceptional aspirant for the determination of mancozeb at commercial level.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Grafito/química , Maneb/química , Nanocompuestos/química , Óxidos/química , Tungsteno/química , Zineb/química , Técnicas Electroquímicas/métodos , Restauración y Remediación Ambiental/instrumentación , Restauración y Remediación Ambiental/métodos , Concentración de Iones de Hidrógeno
8.
Chemosphere ; 294: 133760, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35092751

RESUMEN

Environmental pollution has become a major human concern with the extensive exploitation of pesticides. Pentachlorophenol (PCP) is the most hazardous of all chlorophenols which are being used as pesticide, fungicide, and wood preservative. Thus, the fabrication of ultrasensitive electrochemical methods for the determination of pesticides is of great significance. In the present experiment, a simple, green, and sensitive electrochemical sensor was constructed for the determination of PCP by using a chemically modified nickel ferrite glassy carbon electrode (NiFe2O4/GCE). The fabricated nanoparticles were primarily characterized by several analytical tools to confirm the functionalities, surface texture, crystallinity, and elemental composition. For the investigation of conductive nature, the proposed NiFe2O4/GCE was exploited to the primary electrochemical characterization tools e.g. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The ultra-sensitive determination of PCP was carried out under the linear dynamic range from 0.01 to 90 µM at the pulse amplitude of 80 mV/s in BRB buffer pH of 4. The limit of detection of the developed methods for PCP was calculated to be 0.0016 µM. The analytical applicability of the fabricated sensor was tested in different water samples depicting the acceptable recovery values.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Pentaclorofenol , Carbono/química , Técnicas Electroquímicas/métodos , Electrodos , Contaminantes Ambientales/análisis , Compuestos Férricos , Humanos , Límite de Detección , Níquel , Pentaclorofenol/análisis , Extractos Vegetales
9.
Environ Res ; 205: 112475, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863692

RESUMEN

Heavy metal pollution has become a severe threat to human health and the environment for many years. Their extensive release can severely damage the environment and promote the generation of many harmful diseases of public health concerns. These toxic heavy metals can cause many health problems such as brain damage, kidney failure, immune system disorder, muscle weakness, paralysis of the limbs, cardio complaint, nervous system. For many years, researchers focus on developing specific reliable analytical methods for the determination of heavy metal ions and preventing their acute toxicity to a significant extent. The modern researchers intended to utilize efficient and discerning materials, e.g. nanomaterials, especially the metal nanoparticles to detect heavy metal ions from different real sources rapidly. The metal nanoparticles have been broadly utilized as a sensing material for the colorimetric detection of toxic metal ions. The metal nanoparticles such as Gold (Au), Silver (Ag), and Copper (Cu) exhibited localized plasmon surface resonance (LPSR) properties which adds an outstanding contribution to the colorimetric sensing field. Though, the stability of metal nanoparticles was major issue to be exploited colorimetric sensing of heavy emtal ions, but from last decade different capping and stabilizing agents such as amino acids, vitmains, acids and ploymers were used to functionalize the metal surface of metal nanoparticles. These capping agents prevent the agglomeration of nanoparticles and make them more active for prolong period of time. This review covers a comprehensive work carried out for colorimetric detection of heavy metals based on metal nanoparticles from the year 2014 to onwards.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Colorimetría/métodos , Cobre , Oro/química , Humanos , Iones , Nanopartículas del Metal/química , Plata/química
10.
Langmuir ; 37(10): 3214-3222, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33657802

RESUMEN

2,4,6-Trichlorophenol (2,4,6 TCP) is one of the hazardous toxicants, which has severe impacts on the environment and human health. This study is designed to develop a highly sensitive and selective electrochemical sensor based on CuO nanostructures for the detection of 2,4,6 TCP. The CuO nanostructures were synthesized through an aqueous chemical growth method and characterized by versatile analytical techniques, for example, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, energy-dispersive spectrometry, and X-ray diffraction. The characterization tools revealed a high crystalline nature, exceptional phase purity, nanoball morphology with an average size of around 18.7 nm for the CuO nanostructures. The synthesized material was used to modify a glassy carbon electrode (GCE) with the help of Nafion as a binder to improve its efficiency and sensitivity. The CuO/Nafion/GCE was proven to be a potential sensor for the determination of 2,4,6 TCP under optimized conditions at a scan rate of 70 mV/s, potential range of 0.1-1.0 V, and phosphate buffer of neutral pH as the supporting electrolyte. The linear range for 2,4,6 TCP was set from (1 to 120 µM) with a low limit of detection value calculated to be 0.046 µM. The developed sensor was effectively applied for water samples with acceptable recovery values from 95.9 to 100.6%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...