Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 24(1): 606, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491190

RESUMEN

BACKGROUND: Being a scavenger of free radicals, C60 fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C60 fullerene aqueous solution (C60FAS) on the muscle contractile properties under acute inflammatory pain. METHODS: To induce inflammation a 2.5% formalin solution was injected into the rat triceps surae (TS) muscle. High-frequency electrical stimulation has been used to induce tetanic muscle contraction. A linear motor under servo-control with embedded semi-conductor strain gauge resistors was used to measure the muscle tension. RESULTS: In response to formalin administration, the strength of TS muscle contractions in untreated animals was recorded at 23% of control values, whereas the muscle tension in the C60FAS-treated rats reached 48%. Thus, the treated muscle could generate 2-fold more muscle strength than the muscle in untreated rats. CONCLUSIONS: The attenuation of muscle contraction force reduction caused by preliminary injection of C60FAS is presumably associated with a decrease in the concentration of free radicals in the inflamed muscle tissue, which leads to a decrease in the intensity of nociceptive information transmission from the inflamed muscle to the CNS and thereby promotes the improvement of the functional state of the skeletal muscle.


Asunto(s)
Fulerenos , Ratas , Animales , Fulerenos/farmacología , Ratas Wistar , Agua , Músculo Esquelético , Contracción Muscular , Dolor/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Contracción Isométrica
2.
Acta Neurobiol Exp (Wars) ; 82(4): 477-488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36748971

RESUMEN

Pathological processes, such as inflammatory effects, oxidative stress, apoptosis and cytotoxicity of blood after an intracerebral hemorrhage (ICH), generally contribute to a secondary injury. One of the secondary ICH consequences in the nervous system may be delayed neurodegeneration of the peripheral nerves. Therefore, the aim of our study was to investigate possible structural changes in the sciatic nerve and changes in the conduction velocity via this nerve at different terms after experimental ICH in male Wistar rats. Intracerebral hemorrhage was provided by direct injection of autologous blood into the capsula interna. On the 10th day after ICH mean conduction velocity in sciatic nerve was 15% smaller compared to the control. On the 30th and 90th days after ICH, highly significant decreases in the conduction velocity by 62% and 60%, respectively in comparison with the control group of animals were observed. The data of morphometric analysis demonstrated significant decreases in the mean diameter and density of myelinated fibres at all examined terms after ICH. A number of the myelin sheaths were swollen and lost their regular laminations. Axoplasmic and myelin degenerations were the most frequent events in these nerve fibres; reductions of the diameter of the axis cylinders were also observed. In the contralateral nerve (related to the hemisphere with ICH), negative changes were greater, while the ipsilateral nerve was also subjected to those. Our data demonstrate that the consequences of unilateral ICH in the capsula interna induce bilateral negative changes in the peripheral nervous system of rats.


Asunto(s)
Fibras Nerviosas , Nervio Ciático , Ratas , Animales , Masculino , Ratas Wistar , Nervio Ciático/patología , Fibras Nerviosas/patología , Vaina de Mielina , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/patología
3.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34769453

RESUMEN

Impaired motor and sensory functions are the main features of Charcot-Marie-Tooth disease. Mesenchymal stem cell (MSCs) therapy is one of the possible treatments for this disease. It was assumed that MSCs therapy can improve the contractile properties of the triceps surae (TS) muscles in mice with hereditary peripheral neuropathy. Murine adipose-derived mesenchymal stromal cells (AD-MSCs) were obtained for transplantation into TS muscles of FVB-C-Tg(GFPU)5Nagy/J mice. Three months after AD-MSCs transplantation, animals were subjected to electrophysiological investigations. Parameters of TS muscle tension after intermittent high frequency electrical sciatic nerve stimulations were analyzed. It was found that force of TS muscle tension contraction in animals after AD-MSCs treatment was two-time higher than in untreated mice. Normalized values of force muscle contraction in different phases of electrical stimulation were 0.3 ± 0.01 vs. 0.18 ± 0.01 and 0.26 ± 0.03 vs. 0.13 ± 0.03 for treated and untreated animals, respectively. It is assumed that the two-fold increase in TS muscle strength was caused by stem cell therapy. Apparently, AD-MSCs therapy can promote nerve regeneration and partial restoration of muscle function, and thus can be a potential therapeutic agent for the treatment of peripheral neuropathies.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedad de Charcot-Marie-Tooth/terapia , Células Madre Mesenquimatosas/citología , Músculo Esquelético/fisiología , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Contracción Muscular , Regeneración Nerviosa/fisiología
4.
Sci Rep ; 10(1): 9826, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555429

RESUMEN

The fundamental aspects related to the mechanisms of action of C60 fullerene nanoparticles on the level of the central nervous system in different experimental conditions are still unclear. Electrophysiological investigation and immunohistochemical techniques of c-fos expression were combined to determine which neural elements within the lumbar segments and in the central nucleus of the amygdala (CeA) are activated under skeletal muscle fatigue development with prior application of C60 fullerenes (dissolved in dimethyl sulfoxide and in distilled water, FDS). After high-frequency electrical stimulation of the triceps surae muscle, the main fatigue-related increases in the c-Fos expression level were registered ipsilaterally within lamina 1 and 5 of the lumbar segments and within the contralateral capsular part of the CeA. C60 fullerene pretreatment in animals with subsequent electrical stimulation induced a distinct (2-4 times) decrease in the level of Fos immunoreactivity in the observed structures in comparison with only fatigue-induced rats. It can be supposed that FDS, as antioxidant compound, can decrease the concentration of free radicals in fatigued tissue and reduce the transmission intensity of nociceptive information from muscles to the spinal cord and amygdala, thereby changing the level of c-Fos expression within the lumbar segments and CeA.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Fulerenos/farmacología , Fatiga Muscular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Antioxidantes/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Fulerenos/química , Masculino , Ratas , Ratas Wistar , Médula Espinal/fisiología
5.
Acta Neurobiol Exp (Wars) ; 80(1): 32-37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214272

RESUMEN

The effect of C60 fullerene aqueous colloid solution (C60FAS) on the intensity of long­lasting (persisting for one hour) rotational movements in non­anesthetized rats was investigated. For this purpose, an experimental hemiparkinsonic animal model was used in the study. Rotational movements in hemiparkinsonic animals were initiated by the intraperitoneal administration of the dopamine receptor agonist apomorphine. It was shown that a preliminary injection of C60FAS (a substance with powerful antioxidant properties) in hemiparkinsonic rats induced distinct changes in animal motor behavior. It was revealed that fullerene­pretreated animals, in comparison with non­pretreated or vehicle­pretreated rats, rotated for 1 h at an approximately identical speed until the end of the experiment, whereas the rotation speed of control rats gradually decreased to 20-30% of the initial value. One can assume that the observed changes in the movement dynamics of the hemiparkinsonic rats after C60FAS pretreatment presumably can be induced by the influence of C60FAS on the dopaminergic system, although the isolated potentiation of the action of apomorphine C60FAS cannot be excluded. Nevertheless, earlier data on the action of C60FAS on muscle dynamics has suggested that C60FAS can activate a protective action of the antioxidant system in response to long­lasting muscular activity and that the antioxidant system in turn may directly decrease fatigue­relate d changes during long­lasting muscular activity.


Asunto(s)
Antioxidantes/farmacología , Fulerenos/farmacología , Actividad Motora/efectos de los fármacos , Trastornos Parkinsonianos/fisiopatología , Animales , Apomorfina/farmacología , Femenino , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/fisiopatología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/cirugía , Ratas , Ratas Wistar , Técnicas Estereotáxicas
6.
Oxid Med Cell Longev ; 2018: 2518676, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538799

RESUMEN

The effects of C60FAS (50 and 500 µg/kg) supplementation, in a normal physiological state and after restraint stress exposure, on prooxidant/antioxidant balance in rat tissues were explored and compared with the effects of the known exogenous antioxidant N-acetylcysteine. Oxidative stress biomarkers (ROS, O2·-, H2O2, and lipid peroxidation) and indices of antioxidant status (MnSOD, catalase, GPx, GST, γ-GCL, GR activities, and GSH level) were measured in the brain and the heart. In addition, protein expression of Nrf2 in the nuclear and cytosol fractions as well as the protein level of antiradical enzyme MnSOD and GSH-related enzymes γ-GCLC, GPx, and GSTP as downstream targets of Nrf2 was evaluated by western blot analysis. Under a stress condition, C60FAS attenuates ROS generation and O2·- and H2O2 releases and thus decreases lipid peroxidation as well as increases rat tissue antioxidant capacity. We have shown that C60FAS supplementation has dose-dependent and tissue-specific effects. C60FAS strengthened the antiradical defense through the upregulation of MnSOD in brain cells and maintained MnSOD protein content at the control level in the myocardium. Moreover, C60FAS enhanced the GSH level and the activity/protein expression of GSH-related enzymes. Correlation of these changes with Nrf2 protein content suggests that under stress exposure, along with other mechanisms, the Nrf2/ARE-antioxidant pathway may be involved in regulation of glutathione homeostasis. In our study, in an in vivo model, when C60FAS (50 and 500 µg/kg) was applied alone, no significant changes in Nrf2 protein expression as well as in activity/protein levels of MnSOD and GSH-related enzymes in both tissues types were observed. All these facts allow us to assume that in the in vivo model, C60FAS affects on the brain and heart endogenous antioxidative statuses only during the oxidative stress condition.


Asunto(s)
Antioxidantes/farmacología , Fulerenos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Corazón/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Restricción Física/efectos adversos , Estrés Psicológico/complicaciones , Estrés Psicológico/fisiopatología
7.
Front Physiol ; 9: 517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867560

RESUMEN

The aim of this study is to detect the effects of C60 fullerenes, which possess pronounced antioxidant properties, in comparison with the actions of the known exogenous antioxidants N-acetylcysteine (NAC) and ß-Alanine in terms of exercise tolerance and contractile property changes of the m. triceps surae (TS) during development of the muscle fatigue in rats. The electrical stimulation of the TS muscle during four 30 min series in control rats led to total reduction of the muscle contraction force. Furthermore, the effects of prior intraperitoneal (i.p.) or oral C60FAS application and preliminary i.p. injection of NAC or ß-Alanine on muscle contraction force under fatigue development conditions is studied. In contrast to control rats, animals with C60FAS, NAC, or ß-Alanine administration could maintain a constant level of muscle effort over five stimulation series. The accumulation of secondary products and changes in antioxidant levels in the muscle tissues were also determined after the fatigue tests. The increased levels of lactic acid, thiobarbituric acid reactive substances and H2O2 after stimulation were statistically significant with respect to intact muscles. In the working muscle, there was a significant (p < 0.05) increase in the activity of endogenous antioxidants: reduced glutathione, catalase, glutathione peroxidase, and superoxide dismutase. Treated animal groups showed a decrease in endogenous antioxidant activity relative to the fatigue-induced animals (P < 0.05). Oral C60FAS administration clearly demonstrated an action on skeletal muscle fatigue development similar to the effects of i.p. injections of the exogenous antioxidants NAC or ß-Alanine. This creates opportunities to oral use of C60FAS as a potential therapeutic agent. Due to the membranotropic activity of C60 fullerenes, non-toxic C60FAS has a more pronounced effect on the prooxidant-antioxidant homeostasis of muscle tissues in rats.

8.
J Nanobiotechnology ; 15(1): 8, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086894

RESUMEN

BACKGROUND: Bioactive soluble carbon nanostructures, such as the C60 fullerene can bond with up to six electrons, thus serving by a powerful scavenger of reactive oxygen species similarly to many natural antioxidants, widely used to decrease the muscle fatigue effects. The aim of the study is to define action of the pristine C60 fullerene aqueous colloid solution (C60FAS), on the post-fatigue recovering of m. triceps surae in anaesthetized rats. RESULTS: During fatigue development, we observed decrease in the muscle effort level before C60FAS administration. After the application of C60FAS, a slower effort decrease, followed by the prolonged retention of a certain level, was recorded. An analysis of the metabolic process changes accompanying muscle fatigue showed an increase in the oxidative stress markers H 2 O 2 (hydrogen peroxide) and TBARS (thiobarbituric acid reactive substances) in relation to the intact muscles. After C60FAS administration, the TBARS content and H 2 O 2 level were decreased. The endogenous antioxidant system demonstrated a similar effect because the GSH (reduced glutathione) in the muscles and the CAT (catalase) enzyme activity were increased during fatigue. CONCLUSIONS: C60FAS leads to reduction in the recovery time of the muscle contraction force and to increase in the time of active muscle functioning before appearance of steady fatigue effects. Therefore, it is possible that C60FAS affects the prooxidant-antioxidant muscle tissue homeostasis, subsequently increasing muscle endurance.


Asunto(s)
Antioxidantes/uso terapéutico , Fulerenos/uso terapéutico , Fatiga Muscular , Músculo Esquelético/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Fulerenos/administración & dosificación , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Inyecciones Intramusculares , Masculino , Contracción Muscular , Nanopartículas/administración & dosificación , Nanopartículas/química , Estrés Oxidativo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...