Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(11): 3515-3536, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35293658

RESUMEN

Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure.


Asunto(s)
Ecosistema , Peces , Animales , Invertebrados , Larva , Océanos y Mares
2.
PLoS One ; 10(9): e0135812, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26332384

RESUMEN

When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth) or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes). "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders) on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.


Asunto(s)
Exoesqueleto/fisiología , Biomasa , Peces/fisiología , Moluscos/fisiología , Yacimiento de Petróleo y Gas , Animales , California , Ecosistema , Yacimiento de Petróleo y Gas/química
3.
Proc Natl Acad Sci U S A ; 111(43): 15462-7, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313050

RESUMEN

Secondary (i.e., heterotrophic or animal) production is a main pathway of energy flow through an ecosystem as it makes energy available to consumers, including humans. Its estimation can play a valuable role in the examination of linkages between ecosystem functions and services. We found that oil and gas platforms off the coast of California have the highest secondary fish production per unit area of seafloor of any marine habitat that has been studied, about an order of magnitude higher than fish communities from other marine ecosystems. Most previous estimates have come from estuarine environments, generally regarded as one of the most productive ecosystems globally. High rates of fish production on these platforms ultimately result from high levels of recruitment and the subsequent growth of primarily rockfish (genus Sebastes) larvae and pelagic juveniles to the substantial amount of complex hardscape habitat created by the platform structure distributed throughout the water column. The platforms have a high ratio of structural surface area to seafloor surface area, resulting in large amounts of habitat for juvenile and adult demersal fishes over a relatively small footprint of seafloor. Understanding the biological implications of these structures will inform policy related to the decommissioning of existing (e.g., oil and gas platforms) and implementation of emerging (e.g., wind, marine hydrokinetic) energy technologies.


Asunto(s)
Ecosistema , Peces/crecimiento & desarrollo , Internacionalidad , Yacimiento de Petróleo y Gas , Animales , California , Geografía , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...