Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(35): 4663-4666, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591135

RESUMEN

The response of the trimethylammonium-iodinechloride and diiodide (TMA-ICl/I2) crystal structures have been examined under high pressure using neutron powder diffraction. TMA-ICl exhibits impressive pressure-driven electronic flexibility, where the N⋯I-Cl interactions progressively encompass all the distances represented in analogous structures recorded in the Cambridge Structural Database. Comparison with the TMA-I2 complex reveals that this flexibility is owed to the electronegativity of the chlorine atom which induces increased distortion of the iodine electron cloud. This structural flexibility may be influential in the future design of functional molecular materials.

2.
Phys Chem Chem Phys ; 25(46): 31646-31654, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37986575

RESUMEN

Herein we report the first high-pressure study of the energetic material 3,4,5-trinitro-1H-pyrazole (3,4,5-TNP) using neutron powder diffraction and single-crystal X-ray diffraction. A new high-pressure phase, termed Form II, was first identified through a substantial change in the neutron powder diffraction patterns recorded over the range 4.6-5.3 GPa, and was characterised further by compression of a single crystal to 5.3 GPa in a diamond-anvil cell using X-ray diffraction. 3,4,5-TNP was found to be sensitive to initiation under pressure, as demonstrated by its unexpected and violent decomposition at elevated pressures in successive powder diffraction experiments. Initiation coincided with the sluggish phase transition from Form I to Form II. Using a vibrational up-pumping model, its increased sensitivity under pressure can be explained by pressure-induced mode hardening. These findings have potential implications for the safe handling of 3,4,5-TNP, on the basis that shock- or pressure-loading may lead to significantly increased sensitivity to initiation.

3.
Int J Pharm ; 647: 123514, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844673

RESUMEN

Pharmaceutical cocrystals use common robust hydrogen bonding synthons to create novel materials with different physicochemical properties. In this systematic study of a series of cocrystals, we explore the effect of high pressure on one of these commonly used motifs, the acid-pyridine motif, to assess the commonality of behaviour under extreme conditions. We have surveyed five pyridine dicarboxylic acid systems using both synchrotron and neutron diffraction methods to elucidate the changes in structure. We observe that the hydrogen bonding in these systems compress at a similar rate despite the changes to the molecular make-up of the solids and that on compression the changes in structure are indicative that the layers move along the major slip planes in the structure. We have observed two phase transitions to new forms of the pyrazine:malonic acid system, one for each stoichiometric ratio. This study demonstrates that the combination of two complementary diffraction approaches is key to understanding polymorphic behaviour at high pressure.


Asunto(s)
Difracción de Neutrones , Sincrotrones , Enlace de Hidrógeno , Modelos Moleculares , Cristalización/métodos , Ácidos Dicarboxílicos/química , Piridinas/química , Preparaciones Farmacéuticas
4.
Phys Chem Chem Phys ; 25(21): 14981-14991, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37211856

RESUMEN

From crystalline tetrahydrofuran clathrate hydrate, THF-CH (THF·17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF-CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77-140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, VHDA, upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third form, recovered amorphous (RA). Results from neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF-CH and liquid THF·17H2O solution (∼2.5 M). Although fully amorphous, HDA is heterogeneous with two length scales for water-water correlations (less dense local water structure) and guest-water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest-host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ∼23H2O. The local water structure in HDA is reminiscent of pure HDA-ice featuring 5-coordinated H2O. In VHDA, the hydration structure of HDA is maintained but the local water structure is densified and resembles pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ∼18 H2O molecules and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous.

5.
Phys Rev Lett ; 129(21): 217601, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461960

RESUMEN

According to previous theoretical work, the binary oxide CuO can become a room-temperature multiferroic via tuning of the superexchange interactions by application of pressure. Thus far, however, there has been no experimental evidence for the predicted room-temperature multiferroicity. Here, we show by neutron diffraction that the multiferroic phase in CuO reaches 295 K with the application of 18.5 GPa pressure. We also develop a spin Hamiltonian based on density functional theory and employing superexchange theory for the magnetic interactions, which can reproduce the experimental results. The present Letter provides a stimulus to develop room-temperature multiferroic materials by alternative methods based on existing low temperature compounds, such as epitaxial strain, for tunable multifunctional devices and memory applications.

6.
Chem Mater ; 34(21): 9503-9516, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36397836

RESUMEN

Sr2NiO2Cu2Se2, comprising alternating [Sr2NiO2]2+ and [Cu2Se2]2- layers, is reported. Powder neutron diffraction shows that the Ni2+ ions, which are in a highly elongated NiO4Se2 environment with D4h symmetry, adopt a high-spin configuration and carry localized magnetic moments which order antiferromagnetically below ∼160 K in a √2a × âˆš2a × 2c expansion of the nuclear cell with an ordered moment of 1.31(2) µB per Ni2+ ion. The adoption of the high-spin configuration for this d 8 cation in a pseudo-square-planar ligand field is supported by consideration of the experimental bond lengths and the results of density functional theory (DFT) calculations. This is in contrast to the sulfide analogue Sr2NiO2Cu2S2, which, according to both experiment and DFT calculations, has a much more elongated ligand field, more consistent with the low-spin configuration commonly found for square-planar Ni2+, and accordingly, there is no evidence for magnetic moment on the Ni2+ ions. Examination of the solid solution Sr2NiO2Cu2(Se1-x S x )2 shows direct evidence from the evolution of the crystal structure and the magnetic ordering for the transition from high-spin selenide-rich compounds to low-spin sulfide-rich compounds as a function of composition. Compression of Sr2NiO2Cu2Se2 up to 7.2 GPa does not show any structural signature of a change in the spin state. Consideration of the experimental and computed Ni2+ coordination environments and their subtle changes as a function of temperature, in addition to transitions evident in the transport properties and magnetic susceptibilities in the end members, Sr2NiO2Cu2Se2 and Sr2NiO2Cu2S2, suggest that simple high-spin and low-spin models for Ni2+ may not be entirely appropriate and point to further complexities in these compounds.

7.
J Phys Condens Matter ; 34(32)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35609585

RESUMEN

We revisit the pressure-induced order-disorder transition between phases II and IV in ammonium bromide-d4using neutron diffraction measurements to characterise both the average and local structures. We identify a very sluggish transition that does not proceed to full conversion and local structure correlations indicate a slight preference for ammonium cation ordering along ⟨110⟩ crystallographic directions, as pressure is increased. Simultaneous cooling below ambient temperature appears to facilitate the pressure-induced transition. Variable-temperature, ambient-pressure measurements across the IV → III → II transitions show slower conversion than previously observed, and that phase III exhibits metastability above ambient temperature.

8.
Inorg Chem ; 61(10): 4312-4321, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35238545

RESUMEN

NaNiO2 is a layered material consisting of alternating layers of NaO6 and Jahn-Teller-active NiO6 edge-sharing octahedra. At ambient pressure, it undergoes a broad phase transition from a monoclinic to rhombohedral structure between 465 and 495 K, associated with the loss of long-range orbital ordering. In this work, we present the results of a neutron powder diffraction study on powdered NaNiO2 as a function of pressure and temperature from ambient pressure to ∼5 GPa between 290 and 490 K. The 290 and 460 K isothermal compressions remained in the monoclinic phase up to the maximum pressures studied, whereas the 490 K isotherm was mixed-phase throughout. The unit-cell volume was fitted to a second-order Birch-Murnaghan equation of state, where B = 119.6(5) GPa at 290 K. We observe at 490 K that the fraction of the Jahn-Teller-distorted phase increases with pressure, from 67.8(6)% at 0.71(2) GPa to 80.2(9)% at 4.20(6) GPa. Using this observation, in conjunction with neutron diffraction measurements at 490 K on removing pressure from 5.46(9) to 0.342(13) GPa, we show that the Jahn-Teller transition temperature increases with pressure. Our results are used to present a structural pressure-temperature phase diagram for NaNiO2. To the best of our knowledge, this is the first diffraction study of the effect of pressure on the Jahn-Teller transition temperature in materials with edge-sharing Jahn-Teller-distorted octahedra and the first variable-pressure study focusing on the Jahn-Teller distortion in a nickelate.

9.
J Appl Crystallogr ; 54(Pt 6): 1546-1554, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963760

RESUMEN

High pressure is a powerful thermodynamic tool for exploring the structure and the phase behaviour of the crystalline state, and is now widely used in conventional crystallographic measurements. High-pressure local structure measurements using neutron diffraction have, thus far, been limited by the presence of a strongly scattering, perdeuterated, pressure-transmitting medium (PTM), the signal from which contaminates the resulting pair distribution functions (PDFs). Here, a method is reported for subtracting the pairwise correlations of the commonly used 4:1 methanol:ethanol PTM from neutron PDFs obtained under hydro-static compression. The method applies a molecular-dynamics-informed empirical correction and a non-negative matrix factorization algorithm to recover the PDF of the pure sample. Proof of principle is demonstrated, producing corrected high-pressure PDFs of simple crystalline materials, Ni and MgO, and benchmarking these against simulated data from the average structure. Finally, the first local structure determination of α-quartz under hydro-static pressure is presented, extracting compression behaviour of the real-space structure.

10.
Nat Commun ; 12(1): 3162, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039987

RESUMEN

Ice is a material of fundamental importance for a wide range of scientific disciplines including physics, chemistry, and biology, as well as space and materials science. A well-known feature of its phase diagram is that high-temperature phases of ice with orientational disorder of the hydrogen-bonded water molecules undergo phase transitions to their ordered counterparts upon cooling. Here, we present an example where this trend is broken. Instead, hydrochloric-acid-doped ice VI undergoes an alternative type of phase transition upon cooling at high pressure as the orientationally disordered ice remains disordered but undergoes structural distortions. As seen with in-situ neutron diffraction, the resulting phase of ice, ice XIX, forms through a Pbcn-type distortion which includes the tilting and squishing of hexameric clusters. This type of phase transition may provide an explanation for previously observed ferroelectric signatures in dielectric spectroscopy of ice VI and could be relevant for other icy materials.

11.
J Chem Phys ; 154(11): 114502, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33752367

RESUMEN

Ice III is a hydrogen-disordered phase of ice that is stable between about 0.2 and 0.35 GPa. Upon cooling, it transforms to its hydrogen-ordered counterpart ice IX within the stability region of ice II. Here, the effect of ammonium fluoride doping on this phase transition is investigated, which is followed for the first time with in situ neutron diffraction. The a and c lattice constants are found to expand and contract, respectively, upon hydrogen ordering, yielding an overall negative volume change. Interestingly, the anisotropy in the lattice constants persists when ice IX is fully formed, and negative thermal expansion is observed. Analogous to the isostructural keatite and ß-spodumenes, the negative thermal expansion can be explained through the buildup of torsional strain within the a-b plane as the helical "springs" within the structure expand upon heating. The reversibility of the phase transition was demonstrated upon heating. As seen in diffraction and Raman spectroscopy, the ammonium fluoride doping induces additional residual hydrogen disorder in ice IX and is suggested to be a chemical way for the "excitation" of the configurational ice-rules manifold. Compared to ice VIII, the dopant-induced hydrogen disorder in ice IX is smaller, which suggests a higher density of accessible configurational states close to the ground state in ice IX. This study highlights the importance of dopants for exploring the water's phase diagram and underpins the highly complex solid-state chemistry of ice.

12.
Rev Sci Instrum ; 91(6): 063302, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611043

RESUMEN

We describe a unique cryogen-free closed-cycle refrigerator system using a beryllium-copper VX1 variant of the Paris-Edinburgh press, which enables approximately 3 GPa to be generated on a sample volume of 66 mm3, over the temperature range of 4 K-300 K. The main advantage of this system is its versatility; it has been designed to be fully compatible with the PEARL neutron powder-diffraction instrument at the ISIS facility, but is also compatible with several other instruments at the facility with minor modifications. We provide a full description of the system, along with representative data collected on PEARL from MnF2 at 13 K and 2.4 GPa.

13.
Dalton Trans ; 49(30): 10631-10637, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32697242

RESUMEN

The compression behaviours of La2NiO4+δ and Pr2NiO4+δ have been studied up to a pressure of 2.8 and 2.2 GPa respectively. Using neutron diffraction, the mechanism of compression, and the behaviour of the NiO6 and La/PrO9 polyhedra in these layered perovskite materials have been determined. Their compression mechanisms have then been compared to related materials (La2-xPrxNiO4, Pr2-xNdxNiO4, La2-xSrxNiO4 and Pr2-xCaxNiO4) where the unit-cell volume has been reduced by controlling the composition (x), which acts as an 'effective chemical pressure'. Understanding the effects of both has implications for materials design; pressure can be used to finely tune a property, which theoretically may then be emulated using chemical doping.

14.
Chem Commun (Camb) ; 56(47): 6428-6431, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32391830

RESUMEN

The crystal structure of the small organic molecule, alloxan, has been explored using high-pressure neutron diffraction; its already efficiently-packed structure provides a 'chemical head-start' on the pressure experiment. At the highest pressure measured, alloxan reaches a density of 2.36 g cm-3-unprecedented for a C, H(D), N, O-containing organic material of appreciable molecular weight. Its crystal structure is stable until ca. 6.5 GPa above which the sample starts to undergo amorphisation.

15.
RSC Adv ; 10(69): 42502-42511, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516775

RESUMEN

The short-range structure of 20BaO-80TeO2 glass was studied in situ by high pressure neutron diffraction and high pressure Raman spectroscopy. Neutron diffraction measurements were performed at the PEARL instrument of the ISIS spallation neutron source up to a maximum pressure of 9.0 ± 0.5 GPa. The diffraction data was analysed via reverse Monte Carlo simulations and the changes in the glass short-range structural properties, Ba-O, Te-O and O-O bond lengths and speciation were studied as a function of pressure. Te-O co-ordination increases from 3.51 ± 0.05 to 3.73 ± 0.05, Ba-O coordination from 6.24 ± 0.19 to 6.99 ± 0.34 and O-O coordination from 6.00 ± 0.05 to 6.69 ± 0.06 with an increase in pressure from ambient to 9.0 GPa. In situ high pressure Raman studies found that the ratio of intensities of the two bands at 668 cm-1 and 724 cm-1 increases from 0.99 to 1.18 on applying pressure up to 19.28 ± 0.01 GPa, and that these changes are due to the conversion of TeO3 into TeO4 structural units in the tellurite network. It is found that pressure causes densification of the tellurite network by the enhancement of co-ordination of cations, and an increase in distribution of Te-O and Ba-O bond lengths. The original glass structure is restored upon the release of pressure.

16.
Inorg Chem ; 58(14): 9016-9027, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31241907

RESUMEN

Here we report a high-pressure investigation into the structural and magnetic properties of the double perovskite La2NiMnO6 using neutron scattering over a temperature range of 4.2-300 K at ambient pressure and over a temperature range of 120-1177 K up to a maximum pressure of 6.6 GPa. X-ray diffraction was also used up to a maximum pressure of 64 GPa, over a temperature range of 300-720 K. The sample was found to exist in a mixed rhombohedral/monoclinic symmetry at ambient conditions, the balance of which was found to be strongly temperature- and pressure-dependent. Alternating current magnetometry and X-ray absorption near-edge structure measurements were made at ambient pressure to characterize the sample, suggesting that the transition-metal sites exist in a mixed Ni3+/Mn3+ and Ni2+/Mn4+ state at ambient temperature and pressure. Analysis of the magnetic properties of the sample shows that the Curie temperature can be enhanced by ∼12 K with 2 GPa applied pressure, but it is highly stable at pressures beyond this. We report a pressure-volume-temperature equation of state for this material over this combined temperature and pressure range, with an ambient temperature bulk modulus of ∼179(8) GPa. The previously reported transition from monoclinic to rhombohedral symmetry upon heating to 700 K is seen to be encouraged with applied pressure, transforming fully by ∼1.5 GPa. Raman spectroscopy data were collected up to ∼8 GPa and show no clear changes or discontinuities over the reported phase transition to rhombohedral symmetry or any indication of further changes over the range considered. The ambient-pressure Grüneisen parameter γth was determined to be γth = 2.6 with a Debye temperature of 677 K. The individual modal parameters γj at ambient temperature were also determined from the high-pressure Raman data.

17.
Molecules ; 24(11)2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185609

RESUMEN

Caprolactam, a precursor to nylon-6 has been investigated as part of our studies into the polymerization of materials at high pressure. Single-crystal X-ray and neutron powder diffraction data have been used to explore the high-pressure phase behavior of caprolactam; two new high pressure solid forms were observed. The transition between each of the forms requires a substantial rearrangement of the molecules and we observe that the kinetic barrier to the conversion can aid retention of phases beyond their region of stability. Form II of caprolactam shows a small pressure region of stability between 0.5 GPa and 0.9 GPa with Form III being stable from 0.9 GPa to 5.4 GPa. The two high-pressure forms have a catemeric hydrogen-bonding pattern compared with the dimer interaction observed in ambient pressure Form I. The interaction between the chains has a marked effect on the directions of maximal compressibility in the structure. Neither of the high-pressure forms can be recovered to ambient pressure and there is no evidence of any polymerization occurring.


Asunto(s)
Caprolactama/química , Difracción de Neutrones , Presión , Acetatos/química , Cristalografía por Rayos X , Etanol/química , Modelos Moleculares , Conformación Molecular , Transición de Fase
18.
J Phys Condens Matter ; 31(39): 395402, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31252418

RESUMEN

We describe the high-pressure (4 GPa) high-temperature (∼1100 K) synthesis of the solid solution series SeCo1-x Mn x O3 (0 < x < 1) using H2SeO4 and transition metal oxide mixtures sealed in Pt capsules. Neutron powder diffraction has been performed to determine progression of the structure across the solution. All samples crystallise with orthorhombic Pnma symmetry, and octahedral tilting is determined to increase with Mn content. SQUID magnetometry measurements were performed, and reveal that the Néel temperature shifts only by approximately 1 K over the series.

19.
J Chem Phys ; 150(20): 204506, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31153163

RESUMEN

The type II clathrate hydrate (CH) THF·17 H2O (THF = tetrahydrofuran) is known to amorphize on pressurization to ∼1.3 GPa in the temperature range 77-140 K. This seems to be related to the pressure induced amorphization (PIA) of hexagonal ice to high density amorphous (HDA) ice. Here, we probe the PIA of THF-d8 · 17 D2O (TDF-CD) at 130 K by in situ thermal conductivity and neutron diffraction experiments. Both methods reveal amorphization of TDF-CD between 1.1 and 1.2 GPa and densification of the amorphous state on subsequent heating from 130 to 170 K. The densification is similar to the transition of HDA to very-high-density-amorphous ice. The first diffraction peak (FDP) of the neutron structure factor function, S(Q), of amorphous TDF-CD at 130 K appeared split. This feature is considered a general phenomenon of the crystalline to amorphous transition of CHs and reflects different length scales for D-D and D-O correlations in the water network and the cavity structure around the guest. The maximum corresponding to water-water correlations relates to the position of the FDP of HDA ice at ∼1 GPa. Upon annealing, the different length scales for water-water and water-guest correlations equalize and the FDP in the S(Q) of the annealed amorph represents a single peak. The similarity of local water structures in amorphous CHs and amorphous ices at in situ conditions is confirmed from molecular dynamics simulations. In addition, these simulations show that THF guest molecules are immobilized and retain long-range correlations as in the crystal.

20.
Philos Trans A Math Phys Eng Sci ; 377(2149): 20180227, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31130096

RESUMEN

The hybrid perovskites are coordination frameworks with the same topology as the inorganic perovskites, but with properties driven by different chemistry, including host-framework hydrogen bonding. Like the inorganic perovskites, these materials exhibit many different phases, including structures with potentially exploitable functionality. However, their phase transformations under pressure are more complex and less well understood. We have studied the structures of manganese and cobalt guanidinium formate under pressure using single-crystal X-ray and powder neutron diffraction. Under pressure, these materials transform to a rhombohedral phase isostructural to cadmium guanidinium formate. This transformation accommodates the reduced cell volume while preserving the perovskite topology of the framework. Using density-functional theory calculations, we show that this behaviour is a consequence of the hydrogen-bonded network of guanidinium ions, which act as struts protecting the metal formate framework against compression within their plane. Our results demonstrate more generally that identifying suitable host-guest hydrogen-bonding geometries may provide a route to engineering hybrid perovskite phases with desirable crystal structures. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...