Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Forensic Sci Int ; 275: 138-143, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28364721

RESUMEN

A number of factors are known to affect blow fly behavior with respect to oviposition. Current research indicates that temperature is the most significant factor. However temperature thresholds for oviposition in forensically important blow flies have not been well studied. Here, the oviposition behavior of three species of forensically important blow fly species (Calliphora vicina, Calliphora vomitoria and Lucilia sericata,) was studied under controlled laboratory conditions over a range of temperatures (10-40°C). Lower temperature thresholds for oviposition of 16°C and 17.5°C were established for C. vomitoria and L. sericata respectively, whilst C. vicina continued to lay eggs at 10°C. C. vomitoria and L. sericata both continued to lay eggs at 40°C, whilst the highest temperature at which oviposition occurred in C. vicina was 35°C. Within these thresholds there was considerable variation in the number of surviving pupae, with a general pattern of a single peak within the range of temperatures at which eggs were laid, but with the pattern being much less distinct for L. sericata.


Asunto(s)
Dípteros/fisiología , Oviposición/fisiología , Temperatura , Animales , Entomología , Femenino , Ciencias Forenses , Modelos Lineales , Pupa
2.
Forensic Sci Int ; 266: 185-190, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27289434

RESUMEN

Colonisation times and development rates of specific blow fly species are used to estimate the minimum Post Mortem Interval (mPMI). The presence or absence of bacteria on a corpse can potentially affect the development and survival of blow fly larvae. Therefore an understanding of microbial-insect interactions is important for improving the interpretation of mPMI estimations. In this study, the effect of two bacteria (Escherichia coli and Staphylococcus aureus) on the growth rate and survival of three forensically important blow fly species (Lucilia sericata, Calliphora vicina and Calliphora vomitoria) was investigated. Sterile larvae were raised in a controlled environment (16:8h day: night light cycle, 23:21°C day: night temperature cycle and a constant 35% relative humidity) on four artificial diets prepared with 100µl of 10(5) CFU bacterial solutions as follows: (1) E. coli, (2) S. aureus, (3) a 50:50 E. coli:S. aureus mix and (4) a sterile bacteria-free control diet. Daily measurements (length, width and weight) were taken from first instar larvae through to the emergence of adult flies. Survival rates were also determined at pupation and adult emergence. Results indicate that bacteria were not essential for the development of any of the blow fly species. However, larval growth rates were affected by bacterial diet, with effects differing between blow fly species. Peak larval weights also varied according to species-diet combination; C. vomitoria had the largest weight on E. coli and mixed diets, C. vicina had the largest weight on S. aureus diets, and treatment had no significant effect on the peak larval weight of L. sericata. These results indicate the potential for the bacteria that larvae are exposed to during development on a corpse to alter both developmental rates and larval weight in some blow fly species.


Asunto(s)
Dípteros/microbiología , Escherichia coli/fisiología , Staphylococcus aureus/fisiología , Animales , Peso Corporal , Entomología , Ciencias Forenses , Larva/microbiología , Factores de Tiempo
3.
J Forensic Sci ; 60(6): 1601-4, 2015 11.
Artículo en Inglés | MEDLINE | ID: mdl-26175300

RESUMEN

Timing of oviposition on a corpse is a key factor in entomologically based minimum postmortem interval (mPMI) calculations. However, there is considerable variation in nocturnal oviposition behavior of blow flies reported in the research literature. This study investigated nocturnal oviposition in central England for the first time, over 25 trials from 2011 to 2013. Liver-baited traps were placed in an urban location during control (diurnal), and nocturnal periods and environmental conditions were recorded during each 5-h trial. No nocturnal activity or oviposition was observed during the course of the study indicating that nocturnal oviposition is highly unlikely in central England.


Asunto(s)
Ritmo Circadiano/fisiología , Dípteros/fisiología , Oviposición/fisiología , Animales , Inglaterra , Entomología , Femenino , Humedad , Lluvia , Temperatura , Viento
4.
BMC Ecol ; 12: 14, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-22846071

RESUMEN

BACKGROUND: Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. RESULTS: Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. CONCLUSIONS: Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Ambiente , Modelos Biológicos , Temperatura
5.
BMC Vet Res ; 8: 92, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22738118

RESUMEN

BACKGROUND: The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. RESULTS: The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6-8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. CONCLUSIONS: External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such external sources of infection.


Asunto(s)
Reservorios de Enfermedades/veterinaria , Mustelidae/microbiología , Tuberculosis Bovina/epidemiología , Animales , Bovinos , Simulación por Computador , Modelos Biológicos , Modelos Estadísticos , Mustelidae/fisiología , Dinámica Poblacional , Prevalencia
6.
BMC Ecol ; 11: 7, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21320339

RESUMEN

BACKGROUND: Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing the associated impacts. Coastal ecosystems are important sources of carbon (primary production) to shelf waters and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal assemblages (microphytobenthos: MPB) are vital for autochthonous carbon fixation. The level of in situ production by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic metabolism. In this study, we examine the interactive effects of elevated atmospheric CO(2) concentrations (370, 600, and 1000 ppmv), temperature (6°C, 12°C, and 18°C) and invertebrate biodiversity on MPB biomass in experimental systems. We assembled communities of three common grazing invertebrates (Hydrobia ulvae, Corophium volutator and Hediste diversicolor) in monoculture and in all possible multispecies combinations. This experimental design specifically addresses interactions between the selected climate change variables and any ecological consequences caused by changes in species composition or richness. RESULTS: The effects of elevated CO(2) concentration, temperature and invertebrate diversity were not additive, rather they interacted to determine MPB biomass, and overall this effect was negative. Diversity effects were underpinned by strong species composition effects, illustrating the importance of individual species identity. CONCLUSIONS: Overall, our findings suggest that in natural systems, the complex interactions between changing environmental conditions and any associated changes in invertebrate assemblage structure are likely to reduce MPB biomass. Furthermore, these effects would be sufficient to affect the net metabolic balance of the coastal ecosystem, with important implications for system ecology and sustainable exploitation.


Asunto(s)
Biodiversidad , Dióxido de Carbono/análisis , Cambio Climático , Invertebrados , Temperatura , Animales , Biomasa
7.
Proc Natl Acad Sci U S A ; 107(33): 14556-61, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20679200

RESUMEN

Tropical forest degradation emits carbon at a rate of approximately 0.5 Pgxy(-1), reduces biodiversity, and facilitates forest clearance. Understanding degradation drivers and patterns is therefore crucial to managing forests to mitigate climate change and reduce biodiversity loss. Putative patterns of degradation affecting forest stocks, carbon, and biodiversity have variously been described previously, but these have not been quantitatively assessed together or tested systematically. Economic theory predicts a systematic allocation of land to its highest use value in response to distance from centers of demand. We tested this theory to see if forest exploitation would expand through time and space as concentric waves, with each wave targeting lower value products. We used forest data along a transect from 10 to 220 km from Dar es Salaam (DES), Tanzania, collected at two points in time (1991 and 2005). Our predictions were confirmed: high-value logging expanded 9 kmxy(-1), and an inner wave of lower value charcoal production 2 kmxy(-1). This resource utilization is shown to reduce the public goods of carbon storage and species richness, which significantly increased with each kilometer from DES [carbon, 0.2 Mgxha(-1); 0.1 species per sample area (0.4 ha)]. Our study suggests that tropical forest degradation can be modeled and predicted, with its attendant loss of some public goods. In sub-Saharan Africa, an area experiencing the highest rate of urban migration worldwide, coupled with a high dependence on forest-based resources, predicting the spatiotemporal patterns of degradation can inform policies designed to extract resources without unsustainably reducing carbon storage and biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Árboles/crecimiento & desarrollo , Carbono/metabolismo , Conservación de los Recursos Naturales/tendencias , Agricultura Forestal/tendencias , Geografía , Modelos Biológicos , Tanzanía , Árboles/metabolismo , Clima Tropical , Madera/crecimiento & desarrollo , Madera/metabolismo
8.
PLoS One ; 5(5): e10834, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20520808

RESUMEN

BACKGROUND: With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. METHODOLOGY/PRINCIPAL FINDINGS: Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. CONCLUSIONS/SIGNIFICANCE: Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Modelos Lineales , Modelos Biológicos , Especificidad de la Especie , Factores de Tiempo
9.
Philos Trans R Soc Lond B Biol Sci ; 365(1549): 2107-16, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20513718

RESUMEN

Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.


Asunto(s)
Biodiversidad , Dióxido de Carbono , Cambio Climático , Ecosistema , Temperatura , Animales , Sedimentos Geológicos , Invertebrados/crecimiento & desarrollo , Agua de Mar
10.
Oecologia ; 158(3): 511-20, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18836748

RESUMEN

Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.


Asunto(s)
Conducta Animal , Ecosistema , Invertebrados , Anfípodos , Animales , Bivalvos , Eucariontes , Gastrópodos , Sedimentos Geológicos , Poliquetos
11.
New Phytol ; 179(1): 129-141, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18422899

RESUMEN

The adaptive responses to atmospheric nitrogen deposition for different European accessions of Arabidopsis lyrata petraea were analysed using populations along a strong atmospheric N-deposition gradient. Plants were exposed to three N-deposition rates, reflecting the rates at the different locations, in a full factorial design. Differences between accessions in the response to N were found for important phenological and physiological response variables. For example, plants from low-deposition areas had higher nitrogen-use efficiencies (NUE) and C : N ratios than plants from areas high in N deposition when grown at low N-deposition rates. The NUE decreased in all accessions at higher experimental deposition rates. However, plants from high-deposition areas showed a limited capacity to increase their NUE at lower experimental deposition rates. Plants from low-deposition areas had faster growth rates, higher leaf turnover rates and shorter times to flowering, and showed a greater increase in growth rate in response to N deposition than those from high-deposition areas. Indications for adaptation to N deposition were found, and results suggest that adaptation of plants from areas high in N deposition to increased N deposition has resulted in the loss of plasticity.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Arabidopsis/efectos de los fármacos , Geografía , Nitrógeno/farmacología , Adaptación Fisiológica , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Biomasa , Monitoreo del Ambiente , Islandia , Nitrógeno/metabolismo , Noruega , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Suelo , Reino Unido
12.
Proc Biol Sci ; 274(1625): 2547-54, 2007 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-17698480

RESUMEN

Despite the complexity of natural systems, heterogeneity caused by the fragmentation of habitats has seldom been considered when investigating ecosystem processes. Empirical approaches that have included the influence of heterogeneity tend to be biased towards terrestrial habitats; yet marine systems offer opportunities by virtue of their relative ease of manipulation, rapid response times and the well-understood effects of macrofauna on sediment processes. Here, the influence of heterogeneity on microphytobenthic production in synthetic estuarine assemblages is examined. Heterogeneity was created by enriching patches of sediment with detrital algae (Enteromorpha intestinalis) to provide a source of allochthonous organic matter. A gradient of species density for four numerically dominant intertidal macrofauna (Hediste diversicolor, Hydrobia ulvae, Corophium volutator, Macoma balthica) was constructed, and microphytobenthic biomass at the sediment surface was measured. Statistical analysis using generalized least squares regression indicated that heterogeneity within our system was a significant driving factor that interacted with macrofaunal density and species identity. Microphytobenthic biomass was highest in enriched patches, suggesting that nutrients were obtained locally from the sediment-water interface and not from the water column. Our findings demonstrate that organic enrichment can cause the development of heterogeneity which influences infaunal bioturbation and consequent nutrient generation, a driver of microphytobenthic production.


Asunto(s)
Bivalvos/fisiología , Crustáceos/fisiología , Ecosistema , Eucariontes/fisiología , Gastrópodos/fisiología , Poliquetos/fisiología , Animales , Biomasa , Sedimentos Geológicos , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...