Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464198

RESUMEN

Exposure to both antibiotics and temperature changes can induce similar physiological responses in bacteria. Thus, changes in growth temperature may affect antibiotic resistance. Previous studies have found that evolution under antibiotic stress causes shifts in the optimal growth temperature of bacteria. However, little is known about how evolution under thermal stress affects antibiotic resistance. We examined 100+ heat-evolved strains of Escherichia coli that evolved under thermal stress. We asked whether evolution under thermal stress affects optimal growth temperature, if there are any correlations between evolving in high temperatures and antibiotic resistance, and if these strains' antibiotic efficacy changes depending on the local environment's temperature. We found that: (1) surprisingly, most of the heat-evolved strains displayed a decrease in optimal growth temperature and overall growth relative to the ancestor strain, (2) there were complex patterns of changes in antibiotic resistance when comparing the heat-evolved strains to the ancestor strain, and (3) there were few significant correlations among changes in antibiotic resistance, optimal growth temperature, and overall growth.

2.
Evol Appl ; 16(12): 1901-1920, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143903

RESUMEN

Multidrug antibiotic resistance is an urgent public health concern. Multiple strategies have been suggested to alleviate this problem, including the use of antibiotic combinations and cyclic therapies. We examine how adaptation to (1) combinations of drugs affects resistance to individual drugs, and to (2) individual drugs alters responses to drug combinations. To evaluate this, we evolved multiple strains of drug resistant Staphylococcus epidermidis in the lab. We show that evolving resistance to four highly synergistic combinations does not result in cross-resistance to all of their components. Likewise, prior resistance to one antibiotic in a combination does not guarantee survival when exposed to the combination. We also identify four 3-step and four 2-step treatments that inhibit bacterial growth and confer collateral sensitivity with each step, impeding the development of multidrug resistance. This study highlights the importance of considering higher-order drug combinations in sequential therapies and how antibiotic interactions can influence the evolutionary trajectory of bacterial populations.

3.
Front Microbiol ; 10: 42, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30766517

RESUMEN

Objectives:Understanding how phenotypic traits vary has been a longstanding goal of evolutionary biologists. When examining antibiotic-resistance in bacteria, it is generally understood that the minimum inhibitory concentration (MIC) has minimal variation specific to each bacterial strain-antibiotic combination. However, there is a less studied resistance trait, the mutant prevention concentration (MPC), which measures the MIC of the most resistant sub-population. Whether and how MPC varies has been poorly understood. Here, we ask a simple, yet important question: How much does the MPC vary, within a single strain-antibiotic association? Using a Staphylococcus species and five antibiotics from five different antibiotic classes-ciprofloxacin, doxycycline, gentamicin, nitrofurantoin, and oxacillin-we examined the frequency of resistance for a wide range of concentrations per antibiotic, and measured the repeatability of the MPC, the lowest amount of antibiotic that would ensure no surviving cells in a 1010 population of bacteria. Results: We found a wide variation within the MPC and distributions that were rarely normal. When antibiotic resistance evolved, the distribution of the MPC changed, with all distributions becoming wider and some multi-modal. Conclusion: Unlike the MIC, there is high variability in the MPC for a given bacterial strain-antibiotic combination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...