Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34682436

RESUMEN

Particulate matter (PM) exposure is linked to the worsening of respiratory conditions, including allergic rhinitis (AR), as it can trigger nasal and systemic inflammation. To unveil the underlying molecular mechanisms, we investigated the effects of PM exposure on the release of plasmatic extracellular vesicles (EV) and on the complex cross-talk between the host and the nasal microbiome. To this aim, we evaluated the effects of PM10 and PM2.5 exposures on both the bacteria-derived-EV portion (bEV) and the host-derived EVs (hEV), as well as on bacterial nasal microbiome (bNM) features in 26 AR patients and 24 matched healthy subjects (HS). In addition, we assessed the role exerted by the bNM as a modifier of PM effects on the complex EV signaling network in the paradigmatic context of AR. We observed that PM exposure differently affected EV release and bNM composition in HS compared to AR, thus potentially contributing to the molecular mechanisms underlying AR. The obtained results represent the first step towards the understanding of the complex signaling network linking external stimuli, bNM composition, and the immune risponse.


Asunto(s)
Vesículas Extracelulares , Microbiota , Rinitis Alérgica , Bacterias , Humanos , Material Particulado/análisis , Material Particulado/toxicidad
2.
Mitochondrion ; 46: 172-178, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29730480

RESUMEN

Intrinsic and extrinsic factors that induce cellular oxidative stress damage tissue integrity and promote ageing, resulting in accumulative strand breaks to the mitochondrial DNA (mtDNA) genome. Limited repair mechanisms and close proximity to superoxide generation make mtDNA a prominent biomarker of oxidative damage. Using human DNA we describe an optimised long-range qPCR methodology that sensitively detects mtDNA strand breaks relative to a suite of short mitochondrial and nuclear DNA housekeeping amplicons, which control for any variation in mtDNA copy number. An application is demonstrated by detecting 16-36-fold mtDNA damage in human skin cells induced by hydrogen peroxide and solar simulated radiation.


Asunto(s)
Roturas del ADN , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Peróxido de Hidrógeno/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Humanos , Masculino
3.
J Phys Chem B ; 122(12): 3113-3123, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29504755

RESUMEN

The permeability of multicomponent phospholipid bilayers in the gel phase is investigated via molecular dynamics simulation. The physical role of the different molecules is probed by comparing multiple mixed-component bilayers containing distearylphosphatidylcholine (DSPC) with varying amounts of either the emollient isostearyl isostearate or long-chain alcohol (dodecanol, octadecanol, or tetracosanol) molecules. Permeability is found to depend on both the tail packing density and hydrogen bonding between lipid headgroups and water. Whereas the addition of emollient or alcohol molecules to a gel-phase DSPC bilayer can increase the tail packing density, it also disturbed the hydrogen-bonding network, which in turn can increase interfacial water dynamics. These phenomena have opposing effects on bilayer permeability, which is found to depend on the balance between enhanced tail packing and decreased hydrogen bonding.


Asunto(s)
Geles/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Agua/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estructura Molecular
4.
J Phys Chem B ; 120(50): 12863-12871, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-27957835

RESUMEN

The structural properties of two-component gel-phase bilayers of distearylphosphatidylcholine (DSPC) and alcohol molecules with different compositions and chain lengths (12-24 carbons long) are studied via molecular dynamics simulations. Several bilayer properties, including area per lipid, tilt angle, chain interdigitation, and headgroup offset, are studied for each system and compared, revealing important structural implications depending upon headgroup size and chain length. While tail tilt is the primary mechanism for single-component bilayers to balance tail attraction and headgroup repulsion, our results demonstrate that the lipid mixtures studied adjust this balance via an offset between the depths of the different molecular species in the bilayer; this behavior is found to depend both on composition and on the length of alcohol molecules relative to the length of DSPC tails. It is shown that the structural properties of bilayers with asymmetric tail lengths depend strongly on the bilayer composition, while the composition has less influence on mixed-component bilayers with nearly symmetric tail lengths. These findings are explained on the basis of the interdigitation between bilayer leaflets and how interdigitation is related to other structural properties.

5.
Biophys J ; 111(4): 813-823, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27558724

RESUMEN

Single- and multicomponent lipid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), isostearyl isostearate, and heptadecanoyl heptadecanoate in the gel phase are studied via molecular dynamics simulations. It is shown that the structural properties of multicomponent bilayers can deviate strongly from the structures of their single-component counterparts. Specifically, the lipid mixtures are shown to adopt a compact packing by offsetting the positioning depths at which different lipid species are located in the bilayer. This packing mechanism affects the area per lipid, the bilayer height, and the chain tilt angles and has important consequences for other bilayer properties, such as interfacial hydrogen bonding and bilayer permeability. In particular, the simulations suggest that bilayers containing isostearyl isostearate or heptadecanoyl heptadecanoate are less permeable than pure 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine or DSPC bilayers. Furthermore, hydrogen-bond analysis shows that the residence times of lipid-water hydrogen bonds depend strongly on the bilayer composition, with longer residence times for bilayers that have a higher DSPC content. The findings illustrate and explain the fundamental differences between the properties of single- and multicomponent bilayers.


Asunto(s)
Membrana Dobles de Lípidos/química , Geles , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Agua/química
6.
Mol Ther Nucleic Acids ; 2: e65, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23322014

RESUMEN

Lung pathology in cystic fibrosis is linked to dehydration of the airways epithelial surface which in part results from inappropriately raised sodium reabsorption through the epithelial sodium channel (ENaC). To identify a small-interfering RNA (siRNA) which selectively inhibits ENaC expression, chemically modified 21-mer siRNAs targeting human ENaCα were designed and screened. GSK2225745, was identified as a potent inhibitor of ENaCα mRNA (EC(50) (half maximal effective concentration) = 0.4 nmol/l, maximum knockdown = 85%) and protein levels in A549 cells. Engagement of the RNA interference (RNAi) pathway was confirmed using 5' RACE. Further profiling was carried out in therapeutically relevant human primary cells. In bronchial epithelial cells, GSK2225745 elicited potent suppression of ENaCα mRNA (EC(50) = 1.6 nmol/l, maximum knockdown = 82%). In human nasal epithelial cells, GSK2225745 also produced potent and long-lasting (≥72 hours) suppression of ENaCα mRNA levels which was associated with significant inhibition of ENaC function (69% inhibition of amiloride-sensitive current in cells treated with GSK2225745 at 10 nmol/l). GSK2225745 showed no evidence for potential to stimulate toll-like receptor (TLR)3, 7 or 8. In vivo, topical delivery of GSK2225745 in a lipid nanoparticle formulation to the airways of mice resulted in significant inhibition of the expression of ENaCα in the lungs. In conclusion, GSK2225745 is a potent inhibitor of ENaCα expression and warrants further evaluation as a potential novel inhaled therapeutic for cystic fibrosis.Molecular Therapy - Nucleic Acids (2013) 2, e65; doi:10.1038/mtna.2012.57; published online 15 January 2013.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...