Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 10(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34827190

RESUMEN

ß2-microglobulin (ß2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N ß2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of ß2m by point mutations affecting the Asp76-Lys41 ion-pair of WT ß2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT ß2m, the exceptional amyloidogenicity of the pathogenic D76N ß2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.

2.
Methods Mol Biol ; 2199: 175-189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125651

RESUMEN

Far-UV circular dichroism (CD) spectroscopy is a classical method for the study of the secondary structure of polypeptides in solution. It has been the general view that the α-helix content can be estimated accurately from the CD spectra. However, the technique was less reliable to estimate the ß-sheet contents as a consequence of the structural variety of the ß-sheets, which is reflected in a large spectral diversity of the CD spectra of proteins containing this secondary structure component. By taking into account the parallel or antiparallel orientation and the twist of the ß-sheets, the Beta Structure Selection (BeStSel) method provides an improved ß-structure determination and its performance is more accurate for any of the secondary structure types compared to previous CD spectrum analysis algorithms. Moreover, BeStSel provides extra information on the orientation and twist of the ß-sheets which is sufficient for the prediction of the protein fold.The advantage of CD spectroscopy is that it is a fast and inexpensive technique with easy data processing which can be used in a wide protein concentration range and under various buffer conditions. It is especially useful when the atomic resolution structure is not available, such as the case of protein aggregates, membrane proteins or natively disordered chains, for studying conformational transitions, testing the effect of the environmental conditions on the protein structure, for verifying the correct fold of recombinant proteins in every scientific fields working on proteins from basic protein science to biotechnology and pharmaceutical industry. Here, we provide a brief step-by-step guide to record the CD spectra of proteins and their analysis with the BeStSel method.


Asunto(s)
Algoritmos , Péptidos/química , Pliegue de Proteína , Dicroismo Circular , Conformación Proteica en Lámina beta
3.
Front Chem ; 8: 703, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850685

RESUMEN

Besides the outstanding potential in biomedical applications, extracellular vesicles (EVs) are also promising candidates to expand our knowledge on interactions between vesicular surface proteins and small-molecules which exert biomembrane-related functions. Here we provide mechanistic details on interactions between membrane active peptides with antimicrobial effect (MAPs) and red blood cell derived EVs (REVs) and we demonstrate that they have the capacity to remove members of the protein corona from REVs even at lower than 5 µM concentrations. In case of REVs, the Soret-band arising from the membrane associated hemoglobins allowed to follow the detachment process by flow-Linear Dichroism (flow-LD). Further on, the significant change on the vesicle surfaces was confirmed by transmission electron microscopy (TEM). Since membrane active peptides, such as melittin have the affinity to disrupt vesicles, a combination of techniques, fluorescent antibody labeling, microfluidic resistive pulse sensing, and flow-LD were employed to distinguish between membrane destruction and surface protein detachment. The removal of protein corona members is a newly identified role for the investigated peptides, which indicates complexity of their in vivo function, but may also be exploited in synthetic and natural nanoparticle engineering. Furthermore, results also promote that EVs can be used as improved model systems for biophysical studies providing insight to areas with so far limited knowledge.

4.
Front Immunol ; 11: 599771, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33628204

RESUMEN

Elements of the immune system particularly that of innate immunity, play important roles beyond their traditional tasks in host defense, including manifold roles in the nervous system. Complement-mediated synaptic pruning is essential in the developing and healthy functioning brain and becomes aberrant in neurodegenerative disorders. C1q, component of the classical complement pathway, plays a central role in tagging synapses for elimination; however, the underlying molecular mechanisms and interaction partners are mostly unknown. Neuronal pentraxins (NPs) are involved in synapse formation and plasticity, moreover, NP1 contributes to cell death and neurodegeneration under adverse conditions. Here, we investigated the potential interaction between C1q and NPs, and its role in microglial phagocytosis of synapses in adult mice. We verified in vitro that NPs interact with C1q, as well as activate the complement system. Flow cytometry, immunostaining and co-immunoprecipitation showed that synapse-bound C1q colocalizes and interacts with NPs. High-resolution confocal microscopy revealed that microglia-surrounded C1q-tagged synapses are NP1 positive. We have also observed the synaptic occurrence of C4 suggesting that activation of the classical pathway cannot be ruled out in synaptic plasticity in healthy adult animals. In summary, our results indicate that NPs play a regulatory role in the synaptic function of C1q. Whether this role can be intensified upon pathological conditions, such as in Alzheimer's disease, is to be disclosed.


Asunto(s)
Proteína C-Reactiva/inmunología , Complemento C1q/inmunología , Microglía/inmunología , Proteínas del Tejido Nervioso/inmunología , Fagocitosis , Sinapsis/inmunología , Enfermedad de Alzheimer/inmunología , Animales , Complemento C4/inmunología , Masculino , Ratones
5.
J Biol Chem ; 293(38): 14850-14867, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30087119

RESUMEN

Nonmuscle myosin 2 (NM2) has three paralogs in mammals, NM2A, NM2B, and NM2C, which have both unique and overlapping functions in cell migration, formation of cell-cell adhesions, and cell polarity. Their assembly into homo- and heterotypic bipolar filaments in living cells is primarily regulated by phosphorylation of the N-terminally bound regulatory light chain. Here, we present evidence that the equilibrium between these filaments and single NM2A and NM2B molecules can be controlled via S100 calcium-binding protein interactions and phosphorylation at the C-terminal end of the heavy chains. Furthermore, we show that in addition to S100A4, other members of the S100 family can also mediate disassembly of homotypic NM2A filaments. Importantly, these proteins can selectively remove NM2A molecules from heterotypic filaments. We also found that tail phosphorylation (at Ser-1956 and Ser-1975) of NM2B by casein kinase 2, as well as phosphomimetic substitutions at sites targeted by protein kinase C (PKC) and transient receptor potential cation channel subfamily M member 7 (TRPM7), down-regulates filament assembly in an additive fashion. Tail phosphorylation of NM2A had a comparatively minor effect on filament stability. S100 binding and tail phosphorylation therefore preferentially disassemble NM2A and NM2B, respectively. These two distinct mechanisms are likely to contribute to the temporal and spatial sorting of the two NM2 paralogs within heterotypic filaments. The existence of multiple NM2A-depolymerizing S100 paralogs offers the potential for diverse regulatory inputs modulating NM2A filament disassembly in cells and provides functional redundancy under both physiological and pathological conditions.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas S100/metabolismo , Animales , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Citoesqueleto/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Mutación , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIB no Muscular/química , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Células Sf9 , Canales Catiónicos TRPM/metabolismo
6.
Nucleic Acids Res ; 46(W1): W315-W322, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29893907

RESUMEN

Circular dichroism (CD) spectroscopy is a widely used method to study the protein secondary structure. However, for decades, the general opinion was that the correct estimation of ß-sheet content is challenging because of the large spectral and structural diversity of ß-sheets. Recently, we showed that the orientation and twisting of ß-sheets account for the observed spectral diversity, and developed a new method to estimate accurately the secondary structure (PNAS, 112, E3095). BeStSel web server provides the Beta Structure Selection method to analyze the CD spectra recorded by conventional or synchrotron radiation CD equipment. Both normalized and measured data can be uploaded to the server either as a single spectrum or series of spectra. The originality of BeStSel is that it carries out a detailed secondary structure analysis providing information on eight secondary structure components including parallel-ß structure and antiparallel ß-sheets with three different groups of twist. Based on these, it predicts the protein fold down to the topology/homology level of the CATH protein fold classification. The server also provides a module to analyze the structures deposited in the PDB for BeStSel secondary structure contents in relation to Dictionary of Secondary Structure of Proteins data. The BeStSel server is freely accessible at http://bestsel.elte.hu.


Asunto(s)
Internet , Pliegue de Proteína , Estructura Secundaria de Proteína , Programas Informáticos , Algoritmos , Dicroismo Circular , Bases de Datos de Proteínas , Proteínas/química , Proteínas/genética
7.
Proc Natl Acad Sci U S A ; 115(24): 6303-6308, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844190

RESUMEN

C1q, a member of the immune complement cascade, is implicated in the selective pruning of synapses by microglial phagocytosis. C1q-mediated synapse elimination has been shown to occur during brain development, while increased activation and complement-dependent synapse loss is observed in neurodegenerative diseases. However, the molecular mechanisms underlying C1q-controlled synaptic pruning are mostly unknown. This study addresses distortions in the synaptic proteome leading to C1q-tagged synapses. Our data demonstrated the preferential localization of C1q to the presynapse. Proteomic investigation and pathway analysis of C1q-tagged synaptosomes revealed the presence of apoptotic-like processes in C1q-tagged synapses, which was confirmed experimentally with apoptosis markers. Moreover, the induction of synaptic apoptotic-like mechanisms in a model of sensory deprivation-induced synaptic depression led to elevated C1q levels. Our results unveiled that C1q label-based synaptic pruning is triggered by and directly linked to apoptotic-like processes in the synaptic compartment.


Asunto(s)
Apoptosis/fisiología , Complemento C1q/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Anciano , Activación de Complemento/fisiología , Humanos , Masculino , Microglía/metabolismo , Microglía/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Fagocitosis/fisiología , Proteoma/metabolismo , Proteómica/métodos , Sinapsis/metabolismo
8.
J Phys Chem B ; 120(9): 2165-78, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26890079

RESUMEN

Construction of the presynaptic filament (PSF) of proper helical structure by Rad51 recombinases is a prerequisite of the progress of homologous recombination repair. We studied the contribution of ATP-binding to this structure of wt human Rad51 (hRad51). We exploited the protein-dissociation effect of high hydrostatic pressure to determine the free energy of dissociation of the protomer interfaces in hRad51 oligomer states and used electron microscopy to obtain topological parameters. Without cofactors ATP and Ca(2+) and template DNA, hRad51 did not exist in monomer form, but it formed rodlike long filaments without helical order. ΔG(diss) indicated a strong inherent tendency of aggregation. Binding solely ssDNA left the filament unstructured with slightly increased ΔG(diss). Adding only ATP and Ca(2+) to the buffer disintegrated the self-associated rods into rings and short helices of further increased ΔG(diss). Rad51 binding to ssDNA only with ATP and Ca bound could lead to ordered helical filament formation of proper pitch size with interface contacts of K(d) ∼ 2 × 10(-11) M, indicating a structure of outstanding stability. ATP/Ca binding increased the ΔG(diss) of protomer contacts in the filament by 16 kJ/mol. The results emphasize that ATP-binding in the PSF of hRad51 has an essential, yet purely structural, role.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/metabolismo , Recombinasa Rad51/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Unión Proteica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...