Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BioTech (Basel) ; 12(3)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37606440

RESUMEN

Incorporating a variety of microalgae into wastewater treatment is considered an economically viable and environmentally sound strategy. The present work assessed the growth characteristics of Chlorella sorokiniana during cultivation in balanced synthetic media and domestic wastewater. Increasing the NH4+-N concentration to 360 mg L-1 and adding extra PO43--P and SO42--S (up to 80 and 36 mg L-1, respectively) contributed to an increase in the total biomass levels (5.7-5.9 g L-1) during the cultivation of C. sorokiniana in synthetic media. Under these conditions, the maximum concentrations of chlorophylls and carotenoids were 180 ± 7.5 and 26 ± 1.4 mg L-1, respectively. Furthermore, when studying three types of domestic wastewaters, it was noted that only one wastewater contributed to the productive growth of C. sorokiniana, but all wastewaters stimulated an increased accumulation of protein. Finally, the alga, when growing in optimal unsterilized wastewater, showed a maximum specific growth rate of 0.73 day-1, a biomass productivity of 0.21 g L-1 day-1, and 100% NH4+-N removal. These results demonstrate that the tested alga actively adapts to changes in the composition of the growth medium and accumulates high levels of protein in systems with poor-quality water.

2.
Plants (Basel) ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36559695

RESUMEN

The use of liquid waste as a feedstock for cultivation of microalgae can reduce water and nutrient costs and can also be used to treat wastewater with simultaneous production of biomass and valuable products. This study applied strategies to treat diluted anaerobic digester effluent (ADE) as a residue of biogas reactors with moderate (87 ± 0.6 mg L-1; 10% ADE) and elevated NH4+-N levels (175 ± 1.1 mg L-1; 20% ADE). The effect of ADE dilution on the acclimatization of various microalgae was studied based on the analysis of the growth and productivity of the tested green algae. Two species of the genus Chlorella showed robust growth in the 10-20% ADE (with a maximum total weight of 3.26 ± 0.18 g L-1 for C. vulgaris and 2.81 ± 0.10 g L-1 for C. sorokiniana). The use of 10% ADE made it possible to cultivate the strains of the family Scenedesmaceae more effectively than the use of 20% ADE. The growth of Neochloris sp. in ADE was the lowest compared to other microalgal strains. The results of this study demonstrated the feasibility of introducing individual green microalgae into the processes of nutrient recovery from ADE to obtain biomass with a high protein content.

3.
Plants (Basel) ; 11(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35448814

RESUMEN

The cultivation of microalgae requires the selection of optimal parameters. In this work, the effect of various forms of nitrogen on the growth and productivity of Chlorella sorokiniana AM-02 when cultivated at different temperatures was evaluated. Regardless of the temperature conditions, the highest specific growth rate of 1.26 day-1 was observed in modified Bold's basal medium (BBM) with NH4+ as a nitrogen source, while the highest specific growth rate in BBM with NO3- as a nitrogen source achieved only 1.07 day-1. Moreover, C. sorokiniana grew well in medium based on anaerobic digester effluent (ADE; after anaerobic digestion of chicken/cow manure) with the highest growth rate being 0.92 day-1. The accumulation of proteins in algal cells was comparable in all experiments and reached a maximum of 42% of dry weight. The biomass productivity reached 0.41-0.50 g L-1 day-1 when cultivated in BBM, whereas biomass productivity of 0.32-0.35 g L-1 day-1 was obtained in ADE-based medium. The results, based on a bacterial 16S rRNA gene sequencing approach, revealed the growth of various bacterial species in ADE-based medium in the presence of algal cells (their abundance varied depending on the temperature regimen). The results indicate that biomass from C. sorokiniana AM-02 may be sustainable for animal feed production considering the high protein yields.

4.
Plants (Basel) ; 10(3)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802500

RESUMEN

Microalgae are considered a potential source of valuable compounds for multiple purposes and are potential agents for bioremediation of aquatic environments contaminated with different pollutants. This work evaluates the use of agricultural waste, unsterilized and anaerobically digested, to produce biomass from a strain of Chlorella sorokiniana. Furthermore, the presence of bacteria in these wastes was investigated based on the bacterial 16S rRNA gene sequencing. The results showed a specific growth rate ranging between 0.82 and 1.45 day-1, while the final biomass yield in different digestate-containing treatments (bacterial-contaminated cultures) ranged between 0.33 and 0.50 g L-1 day-1. Besides, substantial amounts of ammonium, phosphate, and sulfate were consumed by C. sorokiniana during the experimental period. The predominant bacteria that grew in the presence of C. sorokiniana in the effluent-containing treatments belonged to the genera Chryseobacterium, Flavobacterium, Sphingomonas, Brevundimonas, Hydrogenophaga, Sphingobacterium, and Pseudomonas. Therefore, this microalga can tolerate and grow in the presence of other microorganisms. Finally, these results show that anaerobically digested agricultural waste materials are a good substitute for growth media for green microalgae; however, phosphate and sulfate levels must also be controlled in the media to maintain adequate growth of microalgae.

5.
J Biosci Bioeng ; 131(3): 290-298, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33172764

RESUMEN

It has been previously shown that magnetite (Fe3O4) nanoparticles stimulate the anaerobic digestion process in several anaerobic reactors. Here we evaluate the effect of magnetite nanoparticles on the efficiency of anaerobic digestion of distillers grains with solubles and sugar beet pulp in mesophilic batch experiments. The addition of magnetite nanopowder had a positive effect on the anaerobic digestion process. CH4 was produced faster in the presence of 50 mg of Fe3O4 per 1 g of added total solids than from treatments without addition of Fe3O4. These results demonstrate that the addition of magnetite enhances the methanogenic decomposition of organic acids. Microbial community structure and dynamics were investigated based on bacterial and archaeal 16S rRNA genes, as well as mcrA genes encoding the methyl-CoM reductase. Depending on the reactor, Bacteroides, midas_1138, Petrimonas, unclassified Rikenellaceae (class Bacteroidia), Ruminiclostridium, Proteiniclasticum, Herbinix, and Intestinibacter (class Clostridia) were the main representatives of the bacterial communities. The archaeal communities in well-performed anaerobic reactors were mainly represented by representatives of the genera Methanosarcina and Methanobacterium. Based on our findings, Fe3O4 nanoparticles, when used properly, will improve biomethane production.


Asunto(s)
Beta vulgaris/química , Reactores Biológicos/microbiología , Óxido Ferrosoférrico/farmacología , Anaerobiosis/efectos de los fármacos , Metano/biosíntesis , Microbiota/efectos de los fármacos , ARN Ribosómico 16S/genética
6.
Biology (Basel) ; 9(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708813

RESUMEN

Microalgae have a wide industrial potential because of their high metabolic diversity and plasticity. Selection of optimal cultivation methods is important to optimize multi-purpose microalgal biotechnologies. In this research, Chlorella sorokiniana AM-02 that was isolated from a freshwater lake was cultured under various high photosynthetic photon flux density (PPFD) conditions and CO2 gas levels in standard Bold's basal medium (BBM). Furthermore, a wide range of nitrate levels (180-1440 mg L-1) was tested on the growth of C. sorokiniana. Microalgae growth, pigment concentration, medium pH, exit gas composition, as well as nitrate, phosphate, and sulfate levels were measured during an experimental period. The preferred high PPFD and optimal CO2 levels were found to be 1000-1400 µmol photons m-2 s-1 and 0.5-2.0% (v/v), respectively. The addition of nitrate ions (up to 1440 mg L-1) to the standard growth medium increased final optical density (OD750), cell count, pigment concentration, and total biomass yield but decreased the initial growth rate at high nitrate levels. Our findings can serve as the basis for a robust photoautotrophic cultivation system to maximize the productivity of large-scale microalgal cultures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA