Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
ACS Infect Dis ; 10(5): 1545-1551, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38632685

RESUMEN

Gram-positive bacteria, in particular Staphylococcus aureus (S. aureus), are the leading bacterial cause of death in high-income countries and can cause invasive infections at various body sites. These infections are associated with prolonged hospital stays, a large economic burden, considerable treatment failure, and high mortality rates. So far, there is only limited knowledge about the specific locations where S. aureus resides in the human body during various infections. Hence, the visualization of S. aureus holds significant importance in microbiological research. Herein, we report the development and validation of a far-red fluorescent probe to detect Gram-positive bacteria, with a focus on staphylococci, in human biopsies from deep-seated infections. This probe displays strong fluorescence and low background in human tissues, outperforming current tools for S. aureus detection. Several applications are demonstrated, including fixed- and live-cell imaging, flow cytometry, and super-resolution bacterial imaging.


Asunto(s)
Colorantes Fluorescentes , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Colorantes Fluorescentes/química , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/diagnóstico , Citometría de Flujo/métodos , Bacterias Grampositivas
2.
R Soc Open Sci ; 11(4): 231441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577215

RESUMEN

For a profound understanding of antagonistic coevolution, it is necessary to identify the coevolving genes. The bacterium Pasteuria and its host, the microcrustacean Daphnia, are a well-characterized paradigm for co-evolution, but the underlying genes remain largely unknown. A genome-wide association study suggested a Pasteuria collagen-like protein 7 (Pcl7) as a candidate mediating parasite attachment and driving its coevolution with the host. Since Pasteuria ramosa cannot currently be genetically manipulated, we used Bacillus thuringiensis to express a fusion protein of a Pcl7 carboxy-terminus from P. ramosa and the amino-terminal domain of a B. thuringiensis collagen-like protein (CLP). Mutant B. thuringiensis (Pcl7-Bt) spores but not wild-type B. thuringiensis (WT-Bt) spores attached to the same site of susceptible hosts as P. ramosa. Furthermore, Pcl7-Bt spores attached readily to susceptible host genotypes, but only slightly to resistant host genotypes. These findings indicated that the fusion protein was properly expressed and folded and demonstrated that indeed the C-terminus of Pcl7 mediates attachment in a host genotype-specific manner. These results provide strong evidence for the involvement of a CLP in the coevolution of Daphnia and P. ramosa and open new avenues for genetic epidemiological studies of host-parasite interactions.

3.
J Vis Exp ; (205)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497624

RESUMEN

Most infections take place within three-dimensional host tissues with intricate anatomy and locally varying host physiology. The positioning of pathogen cells within this diverse environment significantly affects their stress levels, responses, fate, and contribution to the overall progression of the disease and treatment failure. However, due to the technical difficulties in locating µm-sized pathogen cells within cm-sized host organs, this area of research has been relatively unexplored. Here, we present a method for addressing this challenge. We employ serial two-photon tomography and AI-enhanced image analysis to locate individual Salmonella cells throughout the entire spleen, liver lobes, and whole lymph nodes of infected mice. Using fluorescent reporters and in vivo antibody administration, the replication rate of single Salmonella cells, their local interaction with specific immune cells, and bacterial responses to antibiotics can be determined. These methodologies open avenues for a comprehensive examination of infections, their prevention, and treatment within the three-dimensional tissue context.


Asunto(s)
Antibacterianos , Salmonella , Animales , Ratones , Bazo/diagnóstico por imagen , Ganglios Linfáticos , Tomografía
5.
Front Biosci (Landmark Ed) ; 28(5): 99, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37258480

RESUMEN

INTRODUCTION: Blood infections from multi-drug-resistant Salmonella pose a major health burden. This is especially true because Salmonella can survive and replicate intracellularly, and the development of new treatment strategies is dependent on expensive and time-consuming in vivo trials. The aim of this study was to develop a Salmonella-infection model that makes it possible to directly observe Salmonella infections of macrophages in vivo and to use this model to test the effect of antimicrobials against intra- and extracellular Salmonella in order to close the gap between in vitro and rodent-infection models. METHODS: We established suitable Salmonella-infection conditions using genetically engineered zebrafish and Salmonella-expressing fluorescent proteins (green fluorescent protein (GFP) and/or mCherry). RESULTS: We detected Salmonella inside and outside zebrafish larvae macrophages. Administration of the cell-impermeable antibiotic tobramycin removed Salmonella residing outside macrophages but did not affect Salmonella in macrophages, whereas ceftriaxone successfully cleared both types of Salmonella. Salmonella inside and outside macrophages experienced substantial DNA damage after administration of fluoroquinolones consistent with the excellent cell penetration of these antibiotics. CONCLUSIONS: The zebrafish-larvae model enables testing of antimicrobials for efficacy against extra- and intracellular Salmonella in a complex in vivo environment. This model thus might serve for antimicrobial lead optimization prior to using rodent models.


Asunto(s)
Antibacterianos , Pez Cebra , Animales , Larva , Antibacterianos/farmacología , Antibacterianos/metabolismo , Macrófagos/metabolismo , Salmonella/genética
6.
Mol Microbiol ; 118(6): 601-622, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36210525

RESUMEN

Virulence and persistence of the obligate intracellular parasite Toxoplasma gondii involve the secretion of effector proteins belonging to the family of dense granule proteins (GRAs) that act notably as modulators of the host defense mechanisms and participate in cyst wall formation. The subset of GRAs residing in the parasitophorous vacuole (PV) or exported into the host cell, undergo proteolytic cleavage in the Golgi upon the action of the aspartyl protease 5 (ASP5). In tachyzoites, ASP5 substrates play central roles in the morphology of the PV and the export of effectors across the translocon complex MYR1/2/3. Here, we used N-terminal amine isotopic labeling of substrates to identify novel ASP5 cleavage products by comparing the N-terminome of wild-type and Δasp5 lines in tachyzoites and bradyzoites. Validated substrates reside within the PV or PVM in an ASP5-dependent manner. Remarkably, Δasp5 bradyzoites are impaired in the formation of the cyst wall in vitro and exhibit a considerably reduced cyst burden in chronically infected animals. More specifically two-photon serial tomography of infected mouse brains revealed a comparatively reduced number and size of the cysts throughout the establishment of persistence in the absence of ASP5.


Asunto(s)
Proteasas de Ácido Aspártico , Toxoplasma , Animales , Ratones , Toxoplasma/metabolismo , Proteasas de Ácido Aspártico/metabolismo , Proteínas Protozoarias/metabolismo , Infección Persistente , Vacuolas/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo
7.
mBio ; 13(4): e0149822, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35770947

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen responsible for acute and chronic infections in immunocompromised hosts. This organism is known to compete efficiently against coinfecting microorganisms, due in part to the secretion of antimicrobial molecules and the synthesis of siderophore molecules with high affinity for iron. P. aeruginosa possess a large repertoire of TonB-dependent transporters for the uptake of its own, as well as xenosiderophores released from other bacteria or fungi. Here, we show that P. aeruginosa is also capable of utilizing plant-derived polyphenols as an iron source. We found that exclusively plant-derived phenols containing a catechol group (i.e., chlorogenic acid, caffeic acid, quercetin, luteolin) induce the expression of the TonB-dependent transporters PiuA or PirA. This induction requires the two-component system PirR-PirS. Chlorogenic acid in its Fe(III)-loaded form was actively transported by PiuA and PirA and supported growth under iron-limiting conditions. Coincidentally, PiuA and PirA are also the main TonB transporters for the recently approved siderophore-drug conjugate cefiderocol. Surprisingly, quercetin supplementation increased the susceptibility of P. aeruginosa to siderophore-drug conjugates, due to induction of piuA and pirA expression mediated by the PirR-PirS two-component system. These findings suggest a potential novel therapeutic application for these biologically active dietary polyphenols. IMPORTANCE Iron is an essential element for living organisms. Most bacteria synthesize species-specific iron chelators, called siderophores, able to capture iron from their host or the environment. Pseudomonas aeruginosa, an opportunistic pathogen, produces two endogenous siderophores but is able to acquire iron also via xenosiderophores, produced by other bacteria or fungi, using a set of conserved TonB transporters. Here, we show that P. aeruginosa is also able to use plant metabolites, like quercetin and chlorogenic acid, as siderophores. These metabolites possess an iron-chelating catechol group and are recognized and transported by the TonB transporters PirA and PiuA. Since these transporters also promote the specific uptake of siderophore-drug conjugates, P. aeruginosa exposed to these plant catechols becomes hypersusceptible to this novel class of antibiotics. This unexpected finding suggests a potential therapeutic application for quercetin and chlorogenic acid, which were mainly investigated for their antioxidant and anti-inflammatory properties.


Asunto(s)
Pseudomonas aeruginosa , Sideróforos , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Catecoles/metabolismo , Catecoles/farmacología , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Compuestos Férricos/metabolismo , Hierro/metabolismo , Quelantes del Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Quercetina/metabolismo , Sideróforos/metabolismo
8.
Antimicrob Agents Chemother ; 66(5): e0241221, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35435706

RESUMEN

Azithromycin is a clinically important drug for treating invasive salmonellosis despite poor activity in laboratory assays for MIC. Addition of the main buffer in blood, bicarbonate, has been proposed for more physiologically relevant and more predictive testing conditions. However, we show here that bicarbonate-triggered lowering of azithromycin MIC is entirely due to alkalization of insufficiently buffered media. In addition, bicarbonate is unlikely to be altering efflux pump activity.


Asunto(s)
Antiinfecciosos , Azitromicina , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Azitromicina/farmacología , Bicarbonatos/farmacología , Medios de Cultivo , Pruebas de Sensibilidad Microbiana
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34911764

RESUMEN

Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.


Asunto(s)
Antibacterianos/uso terapéutico , Enrofloxacina/uso terapéutico , Salmonelosis Animal/microbiología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/fisiología , Animales , Ratones , Ratones Endogámicos BALB C , Salmonelosis Animal/tratamiento farmacológico
10.
PLoS Biol ; 19(11): e3001446, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34762655

RESUMEN

Copper, while toxic in excess, is an essential micronutrient in all kingdoms of life due to its essential role in the structure and function of many proteins. Proteins mediating ionic copper import have been characterised in detail for eukaryotes, but much less so for prokaryotes. In particular, it is still unclear whether and how gram-negative bacteria acquire ionic copper. Here, we show that Pseudomonas aeruginosa OprC is an outer membrane, TonB-dependent transporter that is conserved in many Proteobacteria and which mediates acquisition of both reduced and oxidised ionic copper via an unprecedented CxxxM-HxM metal binding site. Crystal structures of wild-type and mutant OprC variants with silver and copper suggest that acquisition of Cu(I) occurs via a surface-exposed "methionine track" leading towards the principal metal binding site. Together with whole-cell copper quantitation and quantitative proteomics in a murine lung infection model, our data identify OprC as an abundant component of bacterial copper biology that may enable copper acquisition under a wide range of conditions.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Cobre/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/química , Sitios de Unión , Iones , Masculino , Metionina/metabolismo , Ratones , Modelos Moleculares , Conformación Proteica , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo
11.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236052

RESUMEN

Iron is an essential nutrient for mammals as well as for pathogens. Inflammation-driven changes in systemic and cellular iron homeostasis are central for host-mediated antimicrobial strategies. Here, we studied the role of the iron storage protein ferritin H (FTH) for the control of infections with the intracellular pathogen Salmonella enterica serovar Typhimurium by macrophages. Mice lacking FTH in the myeloid lineage (LysM-Cre+/+Fthfl/fl mice) displayed impaired iron storage capacities in the tissue leukocyte compartment, increased levels of labile iron in macrophages, and an accelerated macrophage-mediated iron turnover. While under steady-state conditions, LysM-Cre+/+Fth+/+ and LysM-Cre+/+Fthfl/fl animals showed comparable susceptibility to Salmonella infection, i.v. iron supplementation drastically shortened survival of LysM-Cre+/+Fthfl/fl mice. Mechanistically, these animals displayed increased bacterial burden, which contributed to uncontrolled triggering of NF-κB and inflammasome signaling and development of cytokine storm and death. Importantly, pharmacologic inhibition of the inflammasome and IL-1ß pathways reduced cytokine levels and mortality and partly restored infection control in iron-treated ferritin-deficient mice. These findings uncover incompletely characterized roles of ferritin and cellular iron turnover in myeloid cells in controlling bacterial spread and for modulating NF-κB and inflammasome-mediated cytokine activation, which may be of vital importance in iron-overloaded individuals suffering from severe infections and sepsis.


Asunto(s)
Apoferritinas , Susceptibilidad a Enfermedades/metabolismo , Inflamación , Hierro , Macrófagos , Infecciones por Salmonella , Salmonella typhimurium/inmunología , Animales , Apoferritinas/deficiencia , Apoferritinas/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-1beta/inmunología , Hierro/inmunología , Hierro/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo , Transducción de Señal/inmunología
12.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34326266

RESUMEN

Gram-negative bacterial pathogens have an outer membrane that restricts entry of molecules into the cell. Water-filled protein channels in the outer membrane, so-called porins, facilitate nutrient uptake and are thought to enable antibiotic entry. Here, we determined the role of porins in a major pathogen, Pseudomonas aeruginosa, by constructing a strain lacking all 40 identifiable porins and 15 strains carrying only a single unique type of porin and characterizing these strains with NMR metabolomics and antimicrobial susceptibility assays. In contrast to common assumptions, all porins were dispensable for Pseudomonas growth in rich medium and consumption of diverse hydrophilic nutrients. However, preferred nutrients with two or more carboxylate groups such as succinate and citrate permeated poorly in the absence of porins. Porins provided efficient translocation pathways for these nutrients with broad and overlapping substrate selectivity while efficiently excluding all tested antibiotics except carbapenems, which partially entered through OprD. Porin-independent permeation of antibiotics through the outer-membrane lipid bilayer was hampered by carboxylate groups, consistent with our nutrient data. Together, these results challenge common assumptions about the role of porins by demonstrating porin-independent permeation of the outer-membrane lipid bilayer as a major pathway for nutrient and drug entry into the bacterial cell.


Asunto(s)
Antibacterianos/metabolismo , Membrana Celular/fisiología , Nutrientes/metabolismo , Porinas/metabolismo , Pseudomonas aeruginosa/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico/fisiología , Permeabilidad de la Membrana Celular
13.
mBio ; 12(3): e0086921, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34061589

RESUMEN

Bacterial outer membrane vesicles (OMVs) enriched with bioactive proteins, toxins, and virulence factors play a critical role in host-pathogen and microbial interactions. The two-component system PhoP-PhoQ (PhoPQ) of Salmonella enterica orchestrates the remodeling of outer membrane lipopolysaccharide (LPS) molecules and concomitantly upregulates OMV production. In this study, we document a novel use of nanoparticle tracking analysis to determine bacterial OMV size and number. Among the PhoPQ-activated genes tested, pagC expression had the most significant effect on the upregulation of OMV production. We provide the first evidence that PhoPQ-mediated upregulation of OMV production contributes to bacterial survival by interfering with complement activation. OMVs protected bacteria in a dose-dependent manner, and bacteria were highly susceptible to complement-mediated killing in their absence. OMVs from bacteria expressing PagC bound to complement component C3b in a dose-dependent manner and inactivated it by recruiting complement inhibitor Factor H. As we also found that Factor H binds to PagC, we propose that PagC interferes with complement-mediated killing of Salmonella in the following two steps: first by engaging Factor H, and second, through the production of PagC-enriched OMVs that divert and inactivate the complement away from the bacteria. Since PhoPQ activation occurs intracellularly, the resultant increase in PagC expression and OMV production is suggested to contribute to the local and systemic spread of Salmonella released from dying host cells that supports the infection of new cells. IMPORTANCE Bacterial outer membrane vesicles (OMVs) mediate critical bacterium-bacterium and host-microbial interactions that influence pathogenesis through multiple mechanisms, including the elicitation of inflammatory responses, delivery of virulence factors, and enhancement of biofilm formation. As such, there is a growing interest in understanding the underlying mechanisms of OMV production. Recent studies have revealed that OMV biogenesis is a finely tuned physiological process that requires structural organization and selective sorting of outer membrane components into the vesicles. In Salmonella, outer membrane remodeling and OMV production are tightly regulated by its PhoPQ system. In this study, we demonstrate that PhoPQ-regulated OMV production plays a significant role in defense against host innate immune attack. PhoPQ-activated PagC expression recruits the complement inhibitor Factor H and degrades the active C3 component of complement. Our results provide valuable insight into the combination of tools and environmental signals that Salmonella employs to evade complement-mediated lysis, thereby suggesting a strong evolutionary adaptation of this facultative intracellular pathogen to protect itself during its extracellular stage in the host.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas del Sistema Complemento/inmunología , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata , Salmonella typhimurium/inmunología , Vesículas Secretoras/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas , Evasión Inmune , Salmonella typhimurium/patogenicidad
14.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33574060

RESUMEN

Staphylococcus aureus causes invasive infections and easily acquires antibiotic resistance. Even antibiotic-susceptible S. aureus can survive antibiotic therapy and persist, requiring prolonged treatment and surgical interventions. These so-called persisters display an arrested-growth phenotype, tolerate high antibiotic concentrations, and are associated with chronic and recurrent infections. To characterize these persisters, we assessed S. aureus recovered directly from a patient suffering from a persistent infection. We show that host-mediated stress, including acidic pH, abscess environment, and antibiotic exposure promoted persister formation in vitro and in vivo. Multiomics analysis identified molecular changes in S. aureus in response to acid stress leading to an overall virulent population. However, further analysis of a persister-enriched population revealed major molecular reprogramming in persisters, including down-regulation of virulence and cell division and up-regulation of ribosomal proteins, nucleotide-, and amino acid-metabolic pathways, suggesting their requirement to fuel and maintain the persister phenotype and highlighting that persisters are not completely metabolically inactive. Additionally, decreased aconitase activity and ATP levels and accumulation of insoluble proteins involved in transcription, translation, and energy production correlated with persistence in S. aureus, underpinning the molecular mechanisms that drive the persister phenotype. Upon regrowth, these persisters regained their virulence potential and metabolically active phenotype, including reduction of insoluble proteins, exhibiting a reversible state, crucial for recurrent infections. We further show that a targeted antipersister combination therapy using retinoid derivatives and antibiotics significantly reduced lag-phase heterogeneity and persisters in a murine infection model. Our results provide molecular insights into persisters and help explain why persistent S. aureus infections are so difficult to treat.


Asunto(s)
Farmacorresistencia Bacteriana , Metaboloma , Fenotipo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Aconitato Hidratasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad
15.
Curr Opin Microbiol ; 59: 16-23, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32810800

RESUMEN

Host-pathogen interactions are often heterogeneous involving individual encounters between host and pathogen cells with diverse molecular mechanisms, response networks, and diverging outcomes. Single-cell reporters can identify the various types of interactions and participating pathogen subsets, help to unravel underlying molecular mechanism, and determine individual outcomes and their impact on disease progression. In this review, we discuss reporters-based on fluorescent proteins. We present different types of reporters and their experimental advantages and challenges, and describe how different strategies can interrogate exposure to antimicrobial host mechanism, pathogen response, inflicted damage, and impact on pathogen fitness at the single-cell level. We find many gaps in available tools but also exciting avenues to address these issues.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas Luminiscentes , Análisis de la Célula Individual , Genes Reporteros/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Proteínas Luminiscentes/genética , Análisis de la Célula Individual/métodos
16.
Metallomics ; 12(12): 2108-2120, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33355556

RESUMEN

Siderophores are iron chelators produced by bacteria to access iron, an essential nutrient. The pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, the former with a high affinity for iron and the latter with a lower affinity. Furthermore, the production of both siderophores involves a positive auto-regulatory loop: the presence of the ferri-siderophore complex is essential for their large production. Since pyochelin has a lower affinity for iron it was hard to consider the role of pyochelin in drastic competitive environments where the host or the environmental microbiota produce strong iron chelators and may inhibit iron chelation by pyochelin. We showed here that the pyochelin pathway overcomes this difficulty through a more complex regulating mechanism for pyochelin production than previously described. Indeed, in the absence of pyoverdine, and thus higher difficulty to access iron, the bacteria are able to produce pyochelin independently of the presence of ferri-pyochelin. The regulation of the pyochelin pathway appeared to be more complex than expected with a more intricate tuning between repression and activation. Consequently, when the bacteria cannot produce pyoverdine they are able to produce pyochelin even in the presence of strong iron chelators. Such results support a more complex and varied role for this siderophore than previously described, and complexify the battle for iron during P. aeruginosa infection.


Asunto(s)
Fenoles/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo , Tiazoles/metabolismo , Humanos , Hierro/metabolismo , Oligopéptidos/metabolismo , Infecciones por Pseudomonas/microbiología
17.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087350

RESUMEN

The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the Escherichia coli Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the α-helical coiled-coil arms via a unique "stapling" mechanism, resulting in the formation of active trimeric Skp. Native client proteins contact all three Skp subunits simultaneously, and accordingly, their binding shifts the Skp population toward the active trimer. This activation mechanism is shown to be essential for Salmonella fitness in a mouse infection model. The coupled mechanism is a unique example of how an ATP-independent chaperone can modulate its activity as a function of the presence of client proteins.

18.
Nat Immunol ; 21(8): 927-937, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32632289

RESUMEN

In response to pathogenic threats, naive T cells rapidly transition from a quiescent to an activated state, yet the underlying mechanisms are incompletely understood. Using a pulsed SILAC approach, we investigated the dynamics of mRNA translation kinetics and protein turnover in human naive and activated T cells. Our datasets uncovered that transcription factors maintaining T cell quiescence had constitutively high turnover, which facilitated their depletion following activation. Furthermore, naive T cells maintained a surprisingly large number of idling ribosomes as well as 242 repressed mRNA species and a reservoir of glycolytic enzymes. These components were rapidly engaged following stimulation, promoting an immediate translational and glycolytic switch to ramp up the T cell activation program. Our data elucidate new insights into how T cells maintain a prepared state to mount a rapid immune response, and provide a resource of protein turnover, absolute translation kinetics and protein synthesis rates in T cells ( https://www.immunomics.ch ).


Asunto(s)
Activación de Linfocitos/fisiología , Biosíntesis de Proteínas/inmunología , Linfocitos T/inmunología , Humanos , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
19.
BMC Microbiol ; 20(1): 129, 2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448155

RESUMEN

BACKGROUND: Gene editing is key for elucidating gene function. Traditional methods, such as consecutive single-crossovers, have been widely used to modify bacterial genomes. However, cumbersome cloning and limited efficiency of negative selection often make this method slower than other methods such as recombineering. RESULTS: Here, we established a time-effective variant of consecutive single-crossovers. This method exploits rapid plasmid construction using Gibson assembly, a convenient E. coli donor strain, and efficient dual-negative selection for improved suicide vector resolution. We used this method to generate in-frame deletions, insertions and point mutations in Salmonella enterica with limited hands-on time. Adapted versions enabled efficient gene editing also in Pseudomonas aeruginosa and multi-drug resistant (MDR) Escherichia coli clinical isolates. CONCLUSIONS: Our method is time-effective and allows facile manipulation of multiple bacterial species including MDR clinical isolates. We anticipate that this method might be broadly applicable to additional bacterial species, including those for which recombineering has been difficult to implement.


Asunto(s)
Escherichia coli/genética , Edición Génica/métodos , Plásmidos/genética , Pseudomonas aeruginosa/genética , Salmonella enterica/genética , Sistemas CRISPR-Cas , Conjugación Genética , Farmacorresistencia Bacteriana Múltiple , Genes Transgénicos Suicidas , Genoma Bacteriano , Mutación
20.
Front Immunol ; 11: 131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32132994

RESUMEN

Altered lipid metabolism in macrophages is associated with various important inflammatory conditions. Although lipid metabolism is an important target for therapeutic intervention, the metabolic requirement involved in lipid accumulation during pro-inflammatory activation of macrophages remains incompletely characterized. We show here that macrophage activation with IFNγ results in increased aerobic glycolysis, iNOS-dependent inhibition of respiration, and accumulation of triacylglycerol. Surprisingly, metabolite tracing with 13C-labeled glucose revealed that the glucose contributed to the glycerol groups in triacylglycerol (TAG), rather than to de novo synthesis of fatty acids. This is in stark contrast to the otherwise similar metabolism of cancer cells, and previous results obtained in activated macrophages and dendritic cells. Our results establish a novel metabolic pathway whereby glucose provides glycerol to the headgroup of TAG during classical macrophage activation.


Asunto(s)
Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Activación de Macrófagos/fisiología , Animales , Glucosa/metabolismo , Glucólisis/fisiología , Interferones/farmacología , Metabolismo de los Lípidos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Cultivo Primario de Células , Respiración , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...