Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(9): e9339, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36188518

RESUMEN

Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non-Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long-lived, lower-fecundity organisms (K life-history strategists), while model A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms (r life-history strategists). Analysis of real-world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time-series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.

2.
Oecologia ; 193(4): 981-993, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32740731

RESUMEN

Diverse global change processes are reshaping the biogeochemistry of stream ecosystems. Nutrient enrichment is a common stressor that can modify flows of biologically important elements such as carbon (C), nitrogen (N), and phosphorus (P) through stream foodwebs by altering the stoichiometric composition of stream organisms. However, enrichment effects on concentrations of other important essential and trace elements in stream taxa are less understood. We investigated shifts in macroinvertebrate ionomes in response to changes in coarse benthic organic matter (CBOM) stoichiometry following N and P enrichment of five detritus-based headwater streams. Concentrations of most elements (17/19) differed among three insect genera (Maccaffertium sp., Pycnopsyche spp., and Tallaperla spp.) prior to enrichment. Genus-specific changes in the body content of: P, magnesium, and sodium (Na) in Tallaperla; P, Na, and cadmium in Pycnopsyche; and P in Maccaffertium were also found across CBOM N:P gradients. These elements increased in Tallaperla but decreased in the other two taxa due to growth dilution at larger body sizes. Multivariate elemental differences were found across all taxa, and ionome-wide shifts with dietary N and P enrichment were also observed in Tallaperla and Pycnopsyche. Our results show that macroinvertebrates exhibit distinct differences in elemental composition beyond C, N, and P and that the ionomic composition of common stream taxa can vary with body size and N and P enrichment. Thus, bottom-up changes in N and P supplies could potentially influence the cycling of lesser studied biologically essential elements in aquatic environments by altering their relative proportions in animal tissues.


Asunto(s)
Ecosistema , Ríos , Animales , Carbono , Invertebrados , Nitrógeno , Fósforo
3.
Ecol Appl ; 30(6): e02130, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32227394

RESUMEN

We used a recently published, open-access data set of U.S. streamwater nitrogen (N) and phosphorus (P) concentrations to test whether watershed land use differentially influences N and P concentrations, including the relative availability of dissolved and particulate nutrient fractions. We tested the hypothesis that N and P concentrations and molar ratios in streams and rivers of the United States reflect differing nutrient inputs from three dominant land-use types (agricultural, urban and forested). We also tested for differences between dissolved inorganic nutrients and suspended particulate nutrient fractions to infer sources and potential processing mechanisms across spatial and temporal scales. Observed total N and P concentrations often exceeded reported thresholds for structural changes to benthic algae (58, 57% of reported values, respectively), macroinvertebrates (39% for TN and TP), and fish (41, 37%, respectively). The majority of dissolved N and P concentrations exceeded threshold concentrations known to stimulate benthic algal growth (85, 87%, respectively), and organic matter breakdown rates (94, 58%, respectively). Concentrations of both N and P, and total and dissolved N:P ratios, were higher in streams and rivers with more agricultural and urban than forested land cover. The pattern of elevated nutrient concentrations with agricultural and urban land use was weaker for particulate fractions. The % N contained in particles decreased slightly with higher agriculture and urbanization, whereas % P in particles was unrelated to land use. Particulate N:P was relatively constant (interquartile range = 2-7) and independent of variation in DIN:DIP (interquartile range = 22-152). Dissolved, but not particulate, N:P ratios were temporally variable. Constant particulate N:P across steep DIN:DIP gradients in both space and time suggests that the stoichiometry of particulates across U.S. watersheds is most likely controlled either by external or by physicochemical instream factors, rather than by biological processing within streams. Our findings suggest that most U.S. streams and rivers have concentrations of N and P exceeding those considered protective of ecological integrity, retain dissolved N less efficiently than P, which is retained proportionally more in particles, and thus transport and export high N:P streamwater to downstream ecosystems on a continental scale.


Asunto(s)
Ecosistema , Ríos , Agricultura , Animales , Nitrógeno/análisis , Fósforo/análisis , Estados Unidos
4.
Science ; 347(6226): 1142-5, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25745171

RESUMEN

Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly depleted via release of detrital food webs from N and P co-limitation. This magnitude of terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment across large parts of river networks, diminishing associated ecosystem services.


Asunto(s)
Secuestro de Carbono , Cadena Alimentaria , Ríos/química , Contaminación del Agua , Acer , Biomasa , Liriodendron , Nitrógeno/química , Fenómenos Fisiológicos de la Nutrición , Fósforo/química , Hojas de la Planta , Quercus , Rhododendron
5.
Ecology ; 96(11): 2994-3004, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27070018

RESUMEN

Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs. We conducted two-year whole-stream N and P additions to five streams to generate gradients in N and P concentration and N:P ratio (target N:P = 2, 8, 16, 32, 128). Larval salamanders are vertebrate predators of primary and secondary macroinvertebrate consumers in many heterotrophic headwater streams in which the basal resources are detritus and associated microorganisms. We determined the effects of N and P on the growth rates of caged and free-roaming larval Desmognathus quadramaculatus and the average body size of larval Eurycea wilderae. Growth rates and average body size increased by up to 40% and 60%, respectively, with P concentration and were negatively related to N:P ratio. These findings were consistent across both species of salamanders using different methodologies (cage vs. free-roaming) and at different temporal scales (3 months vs. 2 yr). Nitrogen concentration was not significantly related to increased growth rate or body size of the salamander species tested. Our findings suggest that salamander growth responds to the relaxation of ecosystem-level P limitation and that moderate P enrichment can have relatively large effects on vertebrate predators in detritus-based food webs.


Asunto(s)
Fósforo/química , Ríos/química , Urodelos/crecimiento & desarrollo , Animales , Tamaño Corporal , Cadena Alimentaria , Invertebrados/fisiología , Larva/fisiología , Nitrógeno , Dinámica Poblacional , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...