Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 11(1): 140, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26969593

RESUMEN

One-step TiO2 nanoparticle synthesis based on the interaction between thiourea and metatitanic acid is applied for sulfur and carbon anatase codoping. The synthesis of the doped TiO2 has been monitored by means of differential thermal analysis and thermogravimetric analysis (DTA-TG), which allows determining the optimal thermal conditions for the process. Electron microscopy showed micrometer-sized (5-15 µm) randomly distributed crystal aggregates, consisting of many 15-40-nm TiO2 nanoparticles. The obtained phase composition and chemical states of the doping elements are analyzed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR) and Raman spectroscopies, and electron paramagnetic resonance (EPR). XRD displays in both samples (doped and pristine) the existence of only one crystalline phase-the tetragonal modification of TiO2-anatase. Further data assessment by means of Rietveld refinement allowed detection of a slight c lattice parameter and volume increase related to incorporation of the doping elements. XPS demonstrated the presence of carbon and sulfur as doping elements in the material. It was confirmed that carbon is in elemental form and also present in oxygen-containing compounds, which are adsorbed on the particle surface. The binding energy for sulfur electron core shell corresponds to the established data for sulfate compounds, where sulfur is in 6+ oxidation state. The synthesized S- and C-codoped TiO2 showed excellent photocatalytic performance during the degradation of organic dyes (rhodamine B, methylene blue), gas-phase oxidation of ethanol under visible light, and photocatalytic hydrogen generation from ethanol under ultraviolet light.

2.
Waste Manag ; 33(11): 2381-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23809618

RESUMEN

This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model.


Asunto(s)
Residuos Electrónicos , Galvanoplastia , Níquel/aislamiento & purificación , Aleaciones , Hierro/química , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Sulfatos/química
3.
Phys Chem Chem Phys ; 10(16): 2189-99, 2008 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-18404225

RESUMEN

The ability to electrodeposit titanium at low temperatures would be an important breakthrough for making corrosion resistant layers on a variety of technically important materials. Ionic liquids have often been considered as suitable solvents for the electrodeposition of titanium. In the present paper we have extensively investigated whether titanium can be electrodeposited from its halides (TiCl(4), TiF(4), TiI(4)) in different ionic liquids, namely1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf(2)N), 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)amide ([BMP]Tf(2)N), and trihexyltetradecyl-phosphonium bis(trifluoromethylsulfonyl)amide ([P(14,6,6,6)]Tf(2)N). Cyclic voltammetry and EQCM measurements show that, instead of elemental Ti, only non-stoichiometric halides are formed, for example with average stoichiometries of TiCl(0.2), TiCl(0.5) and TiCl(1.1). In situ STM measurements show that-in the best case-an ultrathin layer of Ti or TiCl(x) with thickness below 1 nm can be obtained. In addition, results from both electrochemical and chemical reduction experiments of TiCl(4) in a number of these ionic liquids support the formation of insoluble titanium cation-chloride complex species often involving the solvent. Solubility studies suggest that TiCl(3) and, particularly, TiCl(2) have very limited solubility in these Tf(2)N based ionic liquids. Therefore it does not appear possible to reduce Ti(4+) completely to the metal in the presence of chloride. Successful deposition processing for titanium in ionic liquids will require different maybe tailor-made titanium precursors that avoid these problems.

4.
J Phys Chem B ; 111(18): 4693-704, 2007 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-17388503

RESUMEN

In the present paper, the electrodeposition of Al on flame-annealed Au(111) and polycrystalline Au substrates in two air- and water-stable ionic liquids namely, 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py(1,4)]Tf(2)N, and 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide, [EMIm]Tf(2)N, has been investigated by in situ scanning tunneling microscopy (STM), electrochemical quartz crystal microbalance (EQCM), and cyclic voltammetry. The cyclic voltammogram of aluminum deposition and stripping on Au(111) in the upper phase of the biphasic mixture of AlCl(3)/[EMIm]Tf(2)N at room temperature (25 degrees C) shows that the electrodeposition process is completely reversible as also evidenced by in situ STM and EQCM studies. Additionally, a cathodic peak at an electrode potential of about 0.55 V vs Al/Al(III) is correlated to the aluminum UPD process that was evidenced by in situ STM. A surface alloying of Al with Au at the early stage of deposition occurs. It has been found that the Au(111) surface is subject to a restructuring/reconstruction in the upper phase of the biphasic mixture of AlCl(3)/[Py(1,4)]Tf(2)N at room temperature (25 degrees C) and that the deposition is not fully reversible. Furthermore, the underpotential deposition of Al in [Py(1,4)]Tf(2)N is not as clear as in [EMIm]Tf(2)N. The frequency shift in the EQCM experiments in [Py(1,4)]Tf(2)N shows a surprising result as an increase in frequency and a decrease in damping with bulk aluminum deposition at potentials more negative than -1.8 V was observed at room temperature. However, at 100 degrees C there is a frequency decrease with ongoing Al deposition. At -2.0 V vs Al/Al(III), a bulk aluminum deposition sets in.


Asunto(s)
Aluminio/química , Imidazoles/química , Imidas/química , Líquidos Iónicos/química , Microscopía de Túnel de Rastreo/métodos , Pirroles/química , Cuarzo , Aire , Electroquímica , Electrodos , Oro/química , Pirrolidinas , Sensibilidad y Especificidad , Agua/química
5.
J Phys Chem B ; 110(3): 1485-9, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16471700

RESUMEN

There is a controversial debate if a magnetic field can influence the rate of electron transfer (ET) reactions. In this paper, we report kinetic measurements of the ET rate constants for the redox couples [IrCl6]2-/[IrCl6]3-, [Fe(CN)6]3-/[Fe(CN)6]4-, and [Fe(H2O)6]3+/[Fe(H2O)6]2+ in magnetic fields up to 1 T. To reduce effects arising from magnetically induced mass transport (magnetohydrodynamic effect), disk microelectrodes with a diameter of 50 microm were used in potentiodynamic (cyclic and linear sweep voltammetry) and in electrochemical impedance spectroscopy experiments. None of the investigated redox couples showed a magnetic field effect on the ET rate constant.

6.
J Phys Chem B ; 109(15): 7159-68, 2005 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16851816

RESUMEN

The direct electropolymerization of benzene dissolved in the ionic liquid 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate was studied at room temperature applying the electrochemical quartz-crystal microbalance technique. Analysis of the damping changes showed that the Sauerbrey equation could be applied for data evaluation. In the polymer, every third to fourth benzene ring carried a positive charge in the oxidized state. During electropolymerization, some ionic liquid was absorbed in the growing polymer. The redox behavior was characterized by wide peaks typical for conducting polymers. Charge neutrality of the polymer during redox cycling was maintained by anion and cation exchange with the ionic liquid. With increasing scan rate, cation exchange became more and more important.


Asunto(s)
Benceno/química , Química Física/métodos , Electroquímica/métodos , Intercambio Iónico , Polímeros/química , Cationes , Iones , Microscopía Electrónica de Rastreo , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Espectrofotometría , Temperatura , Termodinámica
7.
J Phys Chem B ; 109(42): 19845-50, 2005 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16853566

RESUMEN

The effect of an external magnetic field (up to 0.8 T) on the anodic dissolution of microstructures has been investigated systematically. Copper and silver wires (100 microm in diameter) were embedded in epoxy resin and dissolved potentiostatically while a magnetic field was periodically switched on and off. A special feature of the thus prepared structures is that they show a smooth transition from an inlaid disk to a recessed disk electrode. An increase or a decrease of the limiting current density in the presence of B was found depending on the orientation of the magnetic field and the hydrodynamic conditions in the cell (natural or forced convection). The magnetic forces which are responsible for this are the Lorentz force and the gradient force. We propose a model which discusses the interaction of these forces with the natural and the forced convection to explain the experimental results.

8.
Anal Chem ; 70(13): 2584-8, 1998 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21644778

RESUMEN

The network analysis method was applied to AT cut quartz blanks (f(0) = 10 MHz), which were loaded with liquids of low and medium viscosity (water, methanol, ethanol, 1-propanol, 1-butanol, glycerol solutions). The shift of the resonance frequency Δf could be separated into a term due to rigidly coupled mass Δf(rig) and a term due to viscous damping Δf - Δf(rig). From the difference Δf - Δf(rig) and the broadening of the resonance curve, the complex shear modulus G = G' + iωη(L) was calculated. The viscosity coefficients η(L) are in good agreement with literature data. As G' > 0, it can be concluded that the examined fluids also reveal elasticity at shear frequencies in the MHz range. For the low-viscosity liquids, elastic contributions resulting from collective interactions of molecules are measurable but small and neglectable in most applications. The medium viscous liquid glycerol (98%) begins to exhibit considerable elasticity, resulting from the relaxation of separate molecules.

9.
Anal Bioanal Chem ; 356(1): 27-30, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15045254

RESUMEN

An easy to build potentiometric stripping analysis system for heavy metal determinations (Zn, Cd, Pb, Cu) is described which reaches good sensitivity and precision. Main components are an IBM compatible computer, an ADDA-conversion card and two selfmade electrodes, so it can be realized for one tenth of the price of complete commercial systems. A graphite pencil lead covered with a Hg-film is used as working electrode and a Ag/AgCl electrode as a combined reference/counter electrode. Reproducibility and calibration measurements are reported, heavy metal determinations on soil samples are compared with AAS results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...