Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445069

RESUMEN

Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue. For a tissue-specific regeneration, the required macro- and microstructure of a suitable biomaterial has been largely investigated. Conversely, the function of multiscale structural integrity has been much less explored but is crucial for scaffold design and application. In this work, collagen was extracted from different animal sources with protocols that alter its structure. Collagen of tendon shreds excised from cattle, horse, sheep and pig was structurally investigated by wide- and small-angle X-ray scattering techniques, at both molecular and supramolecular scales, and thermo-mechanically with thermal and load-bearing tests. Tendons were selected because of their resistance to chemical degradation and mechanical stresses. The multiscale structural integrity of tendons' collagen was studied in relation to the animal source, anatomic location and source for collagen extraction.

3.
IUCrJ ; 8(Pt 6): 1024-1034, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804554

RESUMEN

Glycosyl-ation is the process of combining one or more glucose molecules (or other monosaccharides) with molecules of a different nature (which are therefore glycosyl-ated). In biochemistry, glycosyl-ation is catalyzed by several specific enzymes, and assumes considerable importance since it occurs mainly at the expense of proteins and phospho-lipids which are thus transformed into glycoproteins and glycolipids. Conversely, in diabetes and aging, glycation of proteins is a phenomenon of non-enzymatic nature and thus not easily controlled. Glycation of collagen distorts its structure, renders the extracellular matrix stiff and brittle and at the same time lowers the degradation susceptibility thereby preventing renewal. Based on models detailed in this paper and with parameters determined from experimental data, we describe the glycation of type 1 collagen in bovine pericardium derived bio-tissues, upon incubation in glucose and ribose. With arginine and lysine/hy-droxy-lysine amino acids as the primary sites of glycation and assuming that the topological polar surface area of the sugar molecules determines the glycation rates, we modelled the glycation as a function of time and determined the glycation rate and thus the progression of glycation as well as the resulting volume increase.

4.
Cancers (Basel) ; 13(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638437

RESUMEN

The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging-Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS). XPCI-CT discriminates with high sensitivity the effects of MRT, MB and BB irradiations on both healthy and GBM-bearing brains producing a first-time 3D visualization and morphological analysis of the radio-induced lesions, MRT and MB induced tissue ablations, the presence of hyperdense deposits within specific areas of the brain and tumor evolution or regression with respect to the evaluation made few days post-irradiation with an in-vivo magnetic resonance imaging session. Histology, immunohistochemistry, SAXS/WAXS and XRF allowed identification and classification of these deposits as hydroxyapatite crystals with the coexistence of Ca, P and Fe mineralization, and the multi-technique approach enabled the realization, for the first time, of the map of the differential radiosensitivity of the different brain areas treated with MRT and MB. 3D XPCI-CT datasets enabled also the quantification of tumor volumes and Ca/Fe deposits and their full-organ visualization. The multi-scale and multi-technique approach enabled a detailed visualization and classification in 3D of the radio-induced effects on brain tissues bringing new essential information towards the clinical implementation of the MRT and MB radiation therapy techniques.

5.
IUCrJ ; 8(Pt 4): 621-632, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258010

RESUMEN

Diseases like widespread diabetes or rare galactosemia may lead to high sugar concentrations in the human body, thereby promoting the formation of glycoconjugates. Glycation of collagen, i.e. the formation of glucose bridges, is nonenzymatic and therefore cannot be prevented in any other way than keeping the sugar level low. It relates to secondary diseases, abundantly occurring in aging populations and diabetics. However, little is known about the effects of glycation of collagen on the molecular level. We studied in vitro the effect of glycation, with d-glucose and d-galactose as well as d-ribose, on the structure of type 1 collagen by preparing decellularized matrices of bovine pericardia soaked in different sugar solutions, at increasing concentrations (0, 2.5, 5, 10, 20 and 40 mg ml-1), and incubated at 37°C for 3, 14, 30 and 90 days. The tissue samples were analyzed with small- and wide-angle X-ray scattering in scanning mode. We found that glucose and galactose produce similar changes in collagen, i.e. they mainly affect the lateral packing between macromolecules. However, ribose is much faster in glycation, provoking a larger effect on the lateral packing, but also seems to cause qualitatively different effects on the collagen structure.

6.
Nat Commun ; 12(1): 2941, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011929

RESUMEN

Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin's nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue. Proof-of-principle is demonstrated in whole mouse brain, mouse spinal cord and human white and gray matter samples. Outcomes are validated by 2D/3D histology and compared to MRI measurements sensitive to myelin and axon orientations. Specificity to nanostructure is exemplified by concomitantly imaging different myelin types with distinct periodicities. Finally, we illustrate the method's sensitivity towards myelin-related diseases by quantifying myelin alterations in dysmyelinated mouse brain. This non-destructive, stain-free molecular imaging approach enables quantitative studies of myelination within and across samples during development, aging, disease and treatment, and is applicable to other ordered biomolecules or nanostructures.


Asunto(s)
Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/ultraestructura , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Tomografía Computarizada por Rayos X/métodos , Animales , Axones/metabolismo , Axones/ultraestructura , Encéfalo/metabolismo , Encéfalo/ultraestructura , Sistema Nervioso Central/diagnóstico por imagen , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Mielina/metabolismo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Neuroimagen/métodos , Prueba de Estudio Conceptual , Dispersión del Ángulo Pequeño , Médula Espinal/metabolismo , Médula Espinal/ultraestructura
7.
Front Psychol ; 12: 717973, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222135

RESUMEN

We argue for a perspective on bilingual heritage speakers as native speakers of both their languages and present results from a large-scale, cross-linguistic study that took such a perspective and approached bilinguals and monolinguals on equal grounds. We targeted comparable language use in bilingual and monolingual speakers, crucially covering broader repertoires than just formal language. A main database was the open-access RUEG corpus, which covers comparable informal vs. formal and spoken vs. written productions by adolescent and adult bilinguals with heritage-Greek, -Russian, and -Turkish in Germany and the United States and with heritage-German in the United States, and matching data from monolinguals in Germany, the United States, Greece, Russia, and Turkey. Our main results lie in three areas. (1) We found non-canonical patterns not only in bilingual, but also in monolingual speakers, including patterns that have so far been considered absent from native grammars, in domains of morphology, syntax, intonation, and pragmatics. (2) We found a degree of lexical and morphosyntactic inter-speaker variability in monolinguals that was sometimes higher than that of bilinguals, further challenging the model of the streamlined native speaker. (3) In majority language use, non-canonical patterns were dominant in spoken and/or informal registers, and this was true for monolinguals and bilinguals. In some cases, bilingual speakers were leading quantitatively. In heritage settings where the language was not part of formal schooling, we found tendencies of register leveling, presumably due to the fact that speakers had limited access to formal registers of the heritage language. Our findings thus indicate possible quantitative differences and different register distributions rather than distinct grammatical patterns in bilingual and monolingual speakers. This supports the integration of heritage speakers into the native-speaker continuum. Approaching heritage speakers from this perspective helps us to better understand the empirical data and can shed light on language variation and change in native grammars. Furthermore, our findings for monolinguals lead us to reconsider the state-of-the art on majority languages, given recurring evidence for non-canonical patterns that deviate from what has been assumed in the literature so far, and might have been attributed to bilingualism had we not included informal and spoken registers in monolinguals and bilinguals alike.

8.
IUCrJ ; 7(Pt 6): 1131-1141, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33209324

RESUMEN

Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.

9.
J Synchrotron Radiat ; 27(Pt 3): 730-736, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381775

RESUMEN

Across all branches of science, medicine and engineering, high-resolution microscopy is required to understand functionality. Although optical methods have been developed to `defeat' the diffraction limit and produce 3D images, and electrons have proven ever more useful in creating pictures of small objects or thin sections, so far there is no substitute for X-ray microscopy in providing multiscale 3D images of objects with a single instrument and minimal labeling and preparation. A powerful technique proven to continuously access length scales from 10 nm to 10 µm is ptychographic X-ray computed tomography, which, on account of the orthogonality of the tomographic rotation axis to the illuminating beam, still has the limitation of necessitating pillar-shaped samples of small (ca 10 µm) diameter. Large-area planar samples are common in science and engineering, and it is therefore highly desirable to create an X-ray microscope that can examine such samples without the extraction of pillars. Computed laminography, where the axis of rotation is not perpendicular to the illumination direction, solves this problem. This entailed the development of a new instrument, LamNI, dedicated to high-resolution 3D scanning X-ray microscopy via hard X-ray ptychographic laminography. Scanning precision is achieved by a dedicated interferometry scheme and the instrument covers a scan range of 12 mm × 12 mm with a position stability of 2 nm and positioning errors below 5 nm. A new feature of LamNI is a pair of counter-rotating stages carrying the sample and interferometric mirrors, respectively.

10.
Struct Dyn ; 7(1): 014305, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32128347

RESUMEN

In this paper, we present a data workflow developed to operate the adJUstiNg Gain detector FoR the Aramis User station (JUNGFRAU) adaptive gain charge integrating pixel-array detectors at macromolecular crystallography beamlines. We summarize current achievements for operating at 9 GB/s data-rate a JUNGFRAU with 4 Mpixel at 1.1 kHz frame-rate and preparations to operate at 46 GB/s data-rate a JUNGFRAU with 10 Mpixel at 2.2 kHz in the future. In this context, we highlight the challenges for computer architecture and how these challenges can be addressed with innovative hardware including IBM POWER9 servers and field-programmable gate arrays. We discuss also data science challenges, showing the effect of rounding and lossy compression schemes on the MX JUNGFRAU detector images.

11.
Cancer Res ; 80(8): 1762-1772, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32094303

RESUMEN

Breast microcalcifications are a common mammographic finding. Microcalcifications are considered suspicious signs of breast cancer and a breast biopsy is required, however, cancer is diagnosed in only a few patients. Reducing unnecessary biopsies and rapid characterization of breast microcalcifications are unmet clinical needs. In this study, 473 microcalcifications detected on breast biopsy specimens from 56 patients were characterized entirely by Raman mapping and confirmed by X-ray scattering. Microcalcifications from malignant samples were generally more homogeneous, more crystalline, and characterized by a less substituted crystal lattice compared with benign samples. There were significant differences in Raman features corresponding to the phosphate and carbonate bands between the benign and malignant groups. In addition to the heterogeneous composition, the presence of whitlockite specifically emerged as marker of benignity in benign microcalcifications. The whole Raman signature of each microcalcification was then used to build a classification model that distinguishes microcalcifications according to their overall biochemical composition. After validation, microcalcifications found in benign and malignant samples were correctly recognized with 93.5% sensitivity and 80.6% specificity. Finally, microcalcifications identified in malignant biopsies, but located outside the lesion, reported malignant features in 65% of in situ and 98% of invasive cancer cases, respectively, suggesting that the local microenvironment influences microcalcification features. This study confirms that the composition and structural features of microcalcifications correlate with breast pathology and indicates new diagnostic potentialities based on microcalcifications assessment. SIGNIFICANCE: Raman spectroscopy could be a quick and accurate diagnostic tool to precisely characterize and distinguish benign from malignant breast microcalcifications detected on mammography.


Asunto(s)
Enfermedades de la Mama/metabolismo , Enfermedades de la Mama/patología , Mama/patología , Calcinosis/metabolismo , Calcinosis/patología , Espectrometría Raman/métodos , Biomarcadores/análisis , Biopsia , Mama/química , Carcinoma de Mama in situ/química , Carcinoma de Mama in situ/diagnóstico , Carcinoma de Mama in situ/patología , Enfermedades de la Mama/diagnóstico , Neoplasias de la Mama/química , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Calcinosis/diagnóstico , Fosfatos de Calcio/análisis , Carbonatos/análisis , Femenino , Humanos , Fosfatos/análisis , Sensibilidad y Especificidad
12.
J Biophotonics ; 12(10): e201900106, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31211508

RESUMEN

Blood glucose supplies energy to cells and is critical for the human brain. Glycation of collagen, the nonenzymatic formation of glucose-bridges, relates to diseases of aging populations and diabetics. This chemical reaction, together with its biomechanical effects, has been well studied employing animal models. However, the direct impact of glycation on collagen nano-structure is largely overlooked, and there is a lack of ex vivo model systems. Here, we present the impact of glucose on collagen nanostructure in a model system based on abundantly available connective tissue of farm animals. By combining ex vivo small and wide-angle X-ray scattering (SAXS/WAXS) imaging, we characterize intra- and inter-molecular parameters of collagen in decellularized bovine pericardium with picometer precision. We observe three distinct regimes according to glucose concentration. Such a study opens new avenues for inspecting the effects of diabetes mellitus on connective tissues and the influence of therapies on the resulting secondary disorders.


Asunto(s)
Glucosa/farmacología , Pericardio/efectos de los fármacos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Animales , Colágeno Tipo I/metabolismo , Relación Dosis-Respuesta a Droga , Pericardio/citología , Pericardio/metabolismo
13.
IUCrJ ; 6(Pt 3): 373-386, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31098019

RESUMEN

Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers (Z < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength. Here, the benefit of using a wavelength of 2.7 over 1.9 Šis demonstrated for native-SAD phasing on a 266 kDa multiprotein-ligand tubulin complex (T2R-TTL) and is applied in the structure determination of an 86 kDa helicase Sen1 protein at beamline BL-1A of the KEK Photon Factory, Japan. Furthermore, X-ray absorption at long wavelengths was controlled by shaping a lysozyme crystal into spheres of defined thicknesses using a deep-UV laser, and a systematic comparison between wavelengths of 2.7 and 3.3 Šis reported for native SAD. The potential of laser-shaping technology and other challenges for an optimized native-SAD experiment at wavelengths >3 Šare discussed.

14.
J Synchrotron Radiat ; 26(Pt 1): 28-35, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655465

RESUMEN

In this work, the performance of thin silicon carbide membranes as material for radiation hard X-ray beam position monitors (XBPMs) is investigated. Thermal and electrical behavior of XBPMs made from thin silicon carbide membranes and single-crystal diamond is compared using finite-element simulations. Fabricated silicon carbide devices are also compared with a 12 µm commercial polycrystalline diamond XBPM at the Swiss Light Source at the Paul Scherrer Institute. Results show that silicon carbide devices can reach equivalent transparencies while showing improved linearity, dynamics and signal-to-noise ratio compared with commercial polycrystalline diamond XBPMs. Given the obtained results and availability of electronic-grade epitaxies on up to 6 inch wafers, it is expected that silicon carbide can substitute for diamond in most beam monitoring applications, whereas diamond, owing to its lower absorption, could remain the material of choice in cases of extreme X-ray power densities, such as pink and white beams.

15.
Nat Methods ; 15(10): 799-804, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30275593

RESUMEN

The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Recolección de Datos/métodos , Sustancias Macromoleculares/química , Sincrotrones/instrumentación , Antígenos CD13/química , Diseño de Equipo , Humanos , Modelos Moleculares , Muramidasa/química
16.
Acta Crystallogr A Found Adv ; 74(Pt 1): 12-24, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29269594

RESUMEN

Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.


Asunto(s)
Algoritmos , Huesos/diagnóstico por imagen , Tomografía/métodos , Difracción de Rayos X , Humanos , Imagenología Tridimensional , Nanoestructuras
17.
PLoS One ; 12(4): e0176179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28423023

RESUMEN

Nanoscale studies of bone provide key indicators to evidence subtle structural changes that may occur in the biomedical, forensic and archaeological contexts. One specific problem encountered in all those disciplines, for which the identification of nanostructural cues could prove useful, is to properly monitor the effect of heating on bone tissue. In particular, the mechanisms at work at the onset of heating are still relatively unclear. Using a multiscale approach combining Raman microspectroscopy, transmission electron microscopy (TEM), synchrotron quantitative scanning small-angle X-ray scattering imaging (qsSAXSI) and polarized light (PL) microscopy, we investigate the ultrastructure of cortical bovine bone heated at temperatures < 300°C, from the molecular to the macroscopic scale. We show that, despite limited changes in crystal structure, the mineral nanoparticles increase in thickness and become strongly disorganized upon heating. Furthermore, while the nanostructure in distinct anatomical quadrants appears to be statistically different, our results demonstrate this stems from the tissue histology, i.e. from the high degree of heterogeneity of the microstructure induced by the complex cellular processes involved in bone tissue formation. From this study, we conclude that the analysis of bone samples based on the structure and organization of the mineral nanocrystals requires performing measurements at the histological level, which is an advantageous feature of qsSAXSI. This is a critical aspect that extends to a much broader range of questions relating to nanoscale investigations of bone, which could also be extended to other classes of nanostructured heterogeneous materials.


Asunto(s)
Hueso Cortical/ultraestructura , Nanoestructuras/ultraestructura , Animales , Bovinos , Calefacción , Microscopía Electrónica de Transmisión , Dispersión del Ángulo Pequeño , Espectrometría Raman , Difracción de Rayos X
18.
Nature ; 543(7645): 402-406, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28300088

RESUMEN

Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

19.
Acta Crystallogr D Struct Biol ; 72(Pt 9): 1036-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599736

RESUMEN

The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Proteínas/química , Animales , Pollos , Cristalografía por Rayos X/métodos , Diseño de Equipo , Insulina/química , Muramidasa/química , Fotones , Porcinos
20.
PLoS One ; 11(8): e0159838, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547973

RESUMEN

Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-µm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the microarchitecture, being oriented mostly parallel to bone surface, and (v) local surface curvature seems to have an effect on the ultrastructure organization. Further studies that investigate bone ultrastructure orientation and arrangement are needed in order to understand its organization and consequently its relation to bone biology and mechanics.


Asunto(s)
Hueso Esponjoso/ultraestructura , Columna Vertebral/ultraestructura , Absorciometría de Fotón , Adulto , Anciano , Densidad Ósea/fisiología , Calcificación Fisiológica/fisiología , Hueso Esponjoso/diagnóstico por imagen , Femenino , Humanos , Masculino , Microscopía , Persona de Mediana Edad , Dispersión del Ángulo Pequeño , Columna Vertebral/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...