Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39203117

RESUMEN

This study aims to develop low-cost, eco-friendly, and circular economy-compliant composite materials by creating three types of magnetorheological suspensions (MRSs) utilizing lard, carbonyl iron (CI) microparticles, and varying quantities of gelatin particles (GP). These MRSs serve as dielectric materials in cylindrical cells used to fabricate electric capacitors. The equivalent electrical capacitance (C) of these capacitors is measured under different magnetic flux densities (B≤160 mT) superimposed on a medium-frequency electric field (f = 1 kHz) over a period of 120 s. The results indicate that at high values of B, increasing the GP content to 20 vol.% decreases the capacitance C up to about one order of magnitude compared to MRS without GP. From the measured data, the average values of capacitance Cm are derived, enabling the calculation of relative dielectric permittivities (ϵr') and the dynamic viscosities (η) of the MRSs. It is demonstrated that ϵr' and η can be adjusted by modifying the MRS composition and fine-tuned through the magnetic flux density B. A theoretical model based on the theory of dipolar approximations is used to show that ϵr', η, and the magnetodielectric effect can be coarsely adjusted through the composition of MRSs and finely adjusted through the values B of the magnetic flux density. The ability to fine-tune these properties highlights the versatility of these materials, making them suitable for applications in various industries, including electronics, automotive, and aerospace.

2.
Nanomaterials (Basel) ; 12(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35269376

RESUMEN

This work consists in the process of preparing magnetic active composite materials based on cotton fibers, iron carbonyl microparticles and barium titanate nanoparticles, and the electrical devices manufactured with them. For different compositions of the aforementioned ingredients, three such composites are manufactured and compacted at constant pressure between two electrodes. In the absence and in the presence of a magnetic field, using an RLC bridge, magnetocapacitive, magnetoresistive and magnetopiezoelectric effects are highlighted in the custom fabricated devices. It is shown that these effects are significantly influenced by the composition of the materials. Based on the model elaborated in this paper, the mechanisms that contribute to the observed effects are described and the theoretical predictions are shown to agree with the experimental data. The obtained results can be used in the assembly of hybrid magnetic active composites, which are low cost, ecological and have other useful physical characteristics for applications.

3.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461970

RESUMEN

Hybrid magnetorheological elastomers (hMREs) were manufactured based on silicone rubber, silicone oil, carbonyl iron microparticles, graphene nanoparticles and cotton fabric. Using the hMREs, flat capacitors (FCs) were made. Using the installation described in this paper, the electrical capacitance and the coefficient of dielectric losses of the hMREs were measured as a function of the intensity of the magnetic field superimposed over an alternating electric field. From the data obtained, the electrical conductivity, the relative dielectric permittivity and magnetodielectric effects are determined. It is observed that the obtained quantities are significantly influenced by the intensity of the magnetic field and the amount of graphene used.


Asunto(s)
Conductividad Eléctrica , Grafito/química , Campos Magnéticos , Nanopartículas/química , Elastómeros de Silicona/química , Membranas Artificiales , Reología/métodos , Suspensiones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA