Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3D Print Med ; 10(1): 19, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864937

RESUMEN

BACKGROUND: Three-dimensional (3D) printing technology has impacted many clinical applications across medicine. However, 3D printing for Minimally Invasive Direct Coronary Artery Bypass (MIDCAB) has not yet been reported in the peer-reviewed literature. The current observational cohort study aimed to evaluate the impact of half scaled (50% scale) 3D printed (3DP) anatomic models in the pre-procedural planning of MIDCAB. METHODS: Retrospective analysis included 12 patients who underwent MIDCAB using 50% scale 3D printing between March and July 2020 (10 males, 2 females). Distances measured from CT scans and 3DP anatomic models were correlated with Operating Room (OR) measurements. The measurements were compared statistically using Tukey's test. The correspondence between the predicted (3DP & CT) and observed best InterCostal Space (ICS) in the OR was recorded. Likert surveys from the 3D printing registry were provided to the surgeon to assess the utility of the model. The OR time saved by planning the procedure using 3DP anatomic models was estimated subjectively by the cardiothoracic surgeon. RESULTS: All 12 patients were successfully grafted. The 3DP model predicted the optimal ICS in all cases (100%). The distances measured on the 3DP model corresponded well to the distances measured in the OR. The measurements were significantly different between the CT and 3DP (p < 0.05) as well as CT and OR (p < 0.05) groups, but not between the 3DP and OR group. The Likert responses suggested high clinical utility of 3D printing. The mean subjectively estimated OR time saved was 40 min. CONCLUSION: The 50% scaled 3DP anatomic models demonstrated high utility for MIDCAB and saved OR time while being resource efficient. The subjective benefits over routine care that used 3D visualization for surgical planning warrants further investigation.

2.
J Am Coll Radiol ; 20(2): 193-204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35988585

RESUMEN

OBJECTIVE: There is a paucity of utility and cost data regarding the launch of 3D printing in a hospital. The objective of this project is to benchmark utility and costs for radiology-based in-hospital 3D printing of anatomic models in a single, adult academic hospital. METHODS: All consecutive patients for whom 3D printed anatomic models were requested during the first year of operation were included. All 3D printing activities were documented by the 3D printing faculty and referring specialists. For patients who underwent a procedure informed by 3D printing, clinical utility was determined by the specialist who requested the model. A new metric for utility termed Anatomic Model Utility Points with range 0 (lowest utility) to 500 (highest utility) was derived from the specialist answers to Likert statements. Costs expressed in United States dollars were tallied from all 3D printing human resources and overhead. Total costs, focused costs, and outsourced costs were estimated. The specialist estimated the procedure room time saved from the 3D printed model. The time saved was converted to dollars using hospital procedure room costs. RESULTS: The 78 patients referred for 3D printed anatomic models included 11 clinical indications. For the 68 patients who had a procedure, the anatomic model utility points had an overall mean (SD) of 312 (57) per patient (range, 200-450 points). The total operation cost was $213,450. The total cost, focused costs, and outsourced costs were $2,737, $2,180, and $2,467 per model, respectively. Estimated procedure time saved had a mean (SD) of 29.9 (12.1) min (range, 0-60 min). The hospital procedure room cost per minute was $97 (theoretical $2,900 per patient saved with model). DISCUSSION: Utility and cost benchmarks for anatomic models 3D printed in a hospital can inform health care budgets. Realizing pecuniary benefit from the procedure time saved requires future research.


Asunto(s)
Impresión Tridimensional , Radiología , Adulto , Humanos , Tomografía Computarizada por Rayos X , Modelos Anatómicos , Hospitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA