Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 28(8): 10836-10846, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403606

RESUMEN

A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.

2.
Opt Express ; 25(25): 32198-32205, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29245883

RESUMEN

This paper investigates three-dimensional cut wire pair (CWP) behavior in vertically oriented meta-atoms. We first analyze CWP metamaterial inclusions using full-wave electromagnetic simulations. The scattering behavior of the vertical CWP differs substantially from that of the planar version of the same structure. In particular, we show that the vertical CWP supports a magnetic resonance that is solely excited by the incident magnetic field. This is in stark contrast to the bianisotropic resonant excitation of in-plane CWPs. We further show that this CWP behavior can occur in other vertical metamaterial resonators, such as back-to-back linear dipoles and back-to-back split ring resonators (SRRs), due to the strong coupling between the closely spaced metallic elements in the back-to-back configuration. In the case of SRRs, the vertical CWP mode (unexplored in previous literature) can be excited with a magnetic field that is parallel to both SRR loops, and exists in addition to the familiar fundamental resonances of the individual SRRs. In order to fully describe the scattering behavior from such dense arrays of three-dimensional structures, coupling effects between the close-packed inclusions must be included. The new flexibility afforded by using vertical resonators allows us to controllably create purely electric inclusions, purely magnetic inclusions, as well as bianisotropic inclusions, and vastly increases the degrees of freedom for the design of metafilms.

3.
J Phys Chem Lett ; 7(19): 3736-3741, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27593712

RESUMEN

Lead halide perovskites are increasingly considered for applications beyond photovoltaics, for example, light emission and detection, where an ability to pattern and prototype microscale geometries can facilitate the incorporation of this class of materials into devices. Here we demonstrate laser direct write of lead halide perovskites, a remarkably simple procedure that takes advantage of the inverse dependence between perovskite solubility and temperature by using a laser to induce localized heating of an absorbing substrate. We demonstrate arbitrary pattern formation of crystalline CH3NH3PbBr3 on a range of substrates and fabricate and characterize a microscale photodetector using this approach. This direct write methodology provides a path forward for the prototyping and production of perovskite-based devices.

4.
Nat Nanotechnol ; 10(12): 1033-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26414194

RESUMEN

Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

5.
Nanoscale ; 6(5): 2629-33, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24317221

RESUMEN

Ni was deposited onto lithographically-defined conductive three dimensional carbon networks to form asymmetric pseudo-capacitive electrodes. A real capacity of above 500 mF cm(-2), or specific capacitance of ∼2100 F g(-1) near the theoretical value, has been achieved. After a rapid thermal annealing process, amorphous carbon was partially converted into multilayer graphene depending on the annealing temperature and time duration. These annealed Ni-graphene composite structures exhibit enhanced charge transport kinetics relative to un-annealed Ni-carbon scaffolds indicated by a reduction in peak separation from 0.84 V to 0.29 V at a scan rate of 1000 mV s(-1).

6.
Adv Healthc Mater ; 3(6): 876-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24376147

RESUMEN

The determination of electrolytes is invaluable for point of care diagnostic applications. An ion selective transdermal microneedle sensor is demonstrated for potassium by integrating a hollow microneedle with a microfluidic chip to extract fluid through a channel towards a downstream solid-state ion-selective-electrode (ISE). 3D porous carbon and 3D porous graphene electrodes, made via interference lithography, are compared as solid-state transducers for ISE's and evaluated for electrochemical performance, stability, and selectivity. The porous carbon K(+) ISE's show better performance than the porous graphene K(+) ISE's, capable of measuring potassium across normal physiological concentrations in the presence of interfering ions with greater stability. This new microfluidic/microneedle platform shows promise for medical applications.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Potasio/análisis , Técnicas Biosensibles , Carbono/química , Grafito/química , Electrodos de Iones Selectos , Iones/química , Técnicas Analíticas Microfluídicas , Porosidad
7.
ACS Nano ; 6(4): 3573-9, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22404283

RESUMEN

A simple and facile method to fabricate 3D graphene architectures is presented. Pyrolyzed photoresist films (PPF) can easily be patterned into a variety of 2D and 3D structures. We demonstrate how prestructured PPF can be chemically converted into hollow, interconnected 3D multilayered graphene structures having pore sizes around 500 nm. Electrodes formed from these structures exhibit excellent electrochemical properties including high surface area and steady-state mass transport profiles due to a unique combination of 3D pore structure and the intrinsic advantages of electron transport in graphene, which makes this material a promising candidate for microbattery and sensing applications.

8.
Chem Commun (Camb) ; 47(35): 9858-60, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21776520

RESUMEN

Interferometric lithographically fabricated porous carbon acts as active substrates for Surface Enhanced Raman Scattering (SERS) applications with enhancement factors ranging from 7 to 9 orders of magnitude.

9.
Biosens Bioelectron ; 26(8): 3641-6, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21411305

RESUMEN

Nonenzymatic glucose oxidation is demonstrated on highly faceted palladium nanowflower-modified porous carbon electrodes fabricated by interference lithography. Varying electrodeposition parameters were used to control the final shape and morphology of the deposited nanoparticles on the 3D porous carbon which showed a 12 times increase in the electrochemically active surface area over analogous planar electrodes. Extremely fast amperometric glucose responses (achieving 95% of the steady state limiting current in less than 5s) with a linear range from 1 to 10mM and a detection limit of 10 µM were demonstrated. The unusual surface properties of the pyrolyzed photoresist films produced strongly adhered palladium crystal structures that were stable for hundreds of cycles towards glucose oxidation without noticeable current decay.


Asunto(s)
Técnicas Electroquímicas/métodos , Electrodos , Glucosa/análisis , Nanoporos , Ácido Ascórbico/química , Catálisis , Oxidación-Reducción , Paladio/química
10.
ACS Appl Mater Interfaces ; 2(11): 3179-84, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20945871

RESUMEN

Increased mass transport due to hemispherical diffusion is observed to occur in 3D porous carbon electrodes defined by interferometric lithography. Enhanced catalytic methanol oxidation, after modifying the porous carbon with palladium nanoparticles, and uncharacteristically uniform conducting polymer deposition into the structures are demonstrated. Both examples result in two regions of hierarchical porosity that can be created to maximize surface area, via nanostructuring, within the extended porous network, while taking advantage of hemispherical diffusion through the open pores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...