Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 184: 106421, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889654

RESUMEN

Positron emission tomography (PET) imaging with radiotracers that bind to fibrillary amyloid ß (Aß) deposits is an important tool for the diagnosis of Alzheimer's disease (AD) and for the recruitment of patients into clinical trials. However, it has been suggested that rather than the fibrillary Aß deposits, it is smaller, soluble Aß aggregates that exert a neurotoxic effect and trigger AD pathogenesis. The aim of the current study is to develop a PET probe that is capable of detecting small aggregates and soluble Aß oligomers for improved diagnosis and therapy monitoring. An 18F-labeled radioligand was prepared based on the Aß-binding d-enantiomeric peptide RD2, which is currently being evaluated in clinical trials as a therapeutic agent to dissolve Aß oligomers. 18F-labeling was carried out using palladium-catalyzed S-arylation of RD2 with 2-[18F]fluoro-5-iodopyridine ([18F]FIPy). Specific binding of [18F]RD2-cFPy to brain material from transgenic AD (APP/PS1) mice and AD patients was demonstrated with in vitro autoradiography. In vivo uptake and biodistribution of [18F]RD2-cFPy were evaluated using PET analyses in wild-type and transgenic APP/PS1 mice. Although brain penetration and brain wash-out kinetics of the radioligand were low, this study provides proof of principle for a PET probe based on a d-enantiomeric peptide binding to soluble Aß species.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Distribución Tisular , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Tomografía de Emisión de Positrones/métodos
2.
Front Neurosci ; 15: 699926, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671235

RESUMEN

Alzheimer's disease (AD) is characterized by formation of amyloid plaques and neurofibrillary tangles in the brain, which can be mimicked by transgenic mouse models. Here, we report on the characterization of amyloid load in the brains of two transgenic amyloidosis models using positron emission tomography (PET) with florbetaben (FBB), an 18F-labeled amyloid PET tracer routinely used in AD patients. Young, middle-aged, and old homozygous APP/PS1 mice (ARTE10), old hemizygous APPswe/PS1ΔE9, and old wild-type control mice were subjected to FBB PET using a small animal PET/computed tomography scanner. After PET, brains were excised, and ex vivo autoradiography was performed. Plaque pathology was verified on brain sections with histological methods. Amyloid plaque load increased progressively with age in the cortex and hippocampus of ARTE10 mice, which could be detected with both in vivo FBB PET and ex vivo autoradiography. FBB retention showed significant differences to wild-type controls already at 9 months of age by both in vivo and ex vivo analyses. An excellent correlation between data derived from PET and autoradiography could be obtained (r Pearson = 0.947, p < 0.0001). Although amyloid load detected by FBB in the brains of old APPswe/PS1ΔE9 mice was as low as values obtained with young ARTE10 mice, statistically significant discrimination to wild-type animals was reached (p < 0.01). In comparison to amyloid burden quantified by histological analysis, FBB retention correlated best with total plaque load and number of congophilic plaques in the brains of both mouse models. In conclusion, the homozygous ARTE10 mouse model showed superior properties over APPswe/PS1ΔE9 mice for FBB small animal amyloid PET imaging. The absolute amount of congophilic dense-cored plaques seems to be the decisive factor for feasibility of amyloidosis models for amyloid PET analysis.

3.
Mol Imaging Biol ; 22(5): 1255-1265, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32409931

RESUMEN

PURPOSE: A recent study reported on high, longer lasting and finally reversible cerebral uptake of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) induced by epileptic activity. Therefore, we examined cerebral [18F]FET uptake in two chemically induced rat epilepsy models and in patients with focal epilepsy to further investigate whether this phenomenon represents a major pitfall in brain tumor diagnostics and whether [18F]FET may be a potential marker to localize epileptic foci. PROCEDURES: Five rats underwent kainic acid titration to exhibit 3 to 3.5 h of class IV-V motor seizures (status epilepticus, SE). Rats underwent 4× [18F]FET PET and 4× MRI on the following 25 days. Six rats underwent kindling with pentylenetetrazol (PTZ) 3 to 8×/week over 10 weeks, and hence, seizures increased from class I to class IV. [18F]FET PET and MRI were performed regularly on days with and without seizures. Four rats served as healthy controls. Additionally, five patients with focal epilepsy underwent [18F]FET PET within 12 days after the last documented seizure. RESULTS: No abnormalities in [18F]FET PET or MRI were detected in the kindling model. The SE model showed significantly decreased [18F]FET uptake 3 days after SE in all examined brain regions, and especially in the amygdala region, which normalized within 2 weeks. Corresponding signal alterations in T2-weighted MRI were noted in the amygdala and hippocampus, which recovered 24 days post-SE. No abnormality of cerebral [18F]FET uptake was noted in the epilepsy patients. CONCLUSIONS: There was no evidence for increased cerebral [18F]FET uptake after epileptic seizures neither in the rat models nor in patients. The SE model even showed decreased [18F]FET uptake throughout the brain. We conclude that epileptic seizures per se do not cause a longer lasting increased [18F]FET accumulation and are unlikely to be a major cause of pitfall for brain tumor diagnostics.


Asunto(s)
Encéfalo/metabolismo , Epilepsia/diagnóstico por imagen , Tirosina/análogos & derivados , Adulto , Animales , Modelos Animales de Enfermedad , Epilepsia/patología , Femenino , Humanos , Ácido Kaínico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pentilenotetrazol , Tomografía de Emisión de Positrones , Ratas Sprague-Dawley , Tirosina/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...