Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 46(27): 7973-9, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17567154

RESUMEN

Ferrochelatase catalyzes the terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin to form protoheme IX. The crystal structures of human ferrochelatase both with and without the protoporphyrin substrate bound have been determined previously. The substrate-free enzyme has an open active site pocket, while in the substrate-bound enzyme, the active site pocket is closed around the porphyrin macrocycle and a number of active site residues have reoriented side chains. To understand how and why these structural changes occur, we have substituted three amino acid residues (H263, H341, and F337) whose side chains occupy different spatial positions in the substrate-free versus substrate-bound ferrochelatases. The catalytic and structural properties of ferrochelatases containing the amino acid substitutions H263C, H341C, and F337A were examined. It was found that in the H263C and H341C variants, but not the F337A variant enzymes, the side chains of N75, M76, R164, H263, F337, H341, and E343 are oriented in a fashion similar to what is found in ferrochelatase with the bound porphyrin substrate. However, all of the variant forms possess open active site pockets which are found in the structure of porphyrin-free ferrochelatase. Thus, while the interior walls of the active site pocket are remodeled in these variants, the exterior lips remain unaltered in position. One possible explanation for this collective reorganization of active site side chains is the presence of a hydrogen bond network among H263, H341, and E343. This network is disrupted in the variants by alteration of H263C or H341C. In the substrate-bound enzyme, the formation of a hydrogen bond between H263 and a pyrrole nitrogen results in disruption of the network. The possible role of this network in catalysis is discussed.


Asunto(s)
Ferroquelatasa/metabolismo , Sitios de Unión , Catálisis , Ferroquelatasa/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares
2.
J Biol Inorg Chem ; 7(4-5): 427-36, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11941500

RESUMEN

Thermal denaturation of the mesophilic rubredoxin from Clostridium pasteurianum occurs through a number of temperature-dependent steps, the last and irreversible one being release of iron from the [Fe(2+)(SCys)(4)] site. We show here that thermally induced [Fe(2+)(SCys)(4)] site destruction is largely determined by the local environment, and not directly connected to thermostability of the native polypeptide fold of rubredoxin. Hydrophobic residues on the protein surface, V8 and L41, that shield the [Fe(SCys)(4)] site from solvent and form N-H(.)S hydrogen bonds to the metal-coordinating sulfurs, were mutated to residues with both uncharged and charged side chains. On these mutated rubredoxins the temperature dependence was measured for: (1) global unfolding of the protein by NMR, (2) loss of Fe(2+)at various ionic strengths and pH values, (3) the rates of non-denaturing displacement of Fe(2+) by Cd(2+) or Zn(2+). For reversible temperature-dependent changes in the global protein folding that occur prior to loss of iron, no thermostability differences were found among the wild-type, V8A, V8D, L41R, and L41D rubredoxins. However, for irreversible loss of iron from the [Fe(2+)(SCys)(4)] site, relative to the wild-type protein, L41R was more thermostable, V8A was somewhat less thermostable, and the acidic mutants L41D, V8D and [V8D, L41D] showed dramatically lowered thermostability. Lower pH facilitated - both kinetically and thermodynamically - thermally induced iron release, likely through protonation of ligand cysteines' thiols. For all of the rubredoxins a direct correlation was found between the midpoint temperature for thermally induced Fe(2+) loss and the rate of non-denaturing Fe(2+) displacement by Cd(2+) or Zn(2+) at room temperature. A mechanism is proposed involving transient movement of residue-8 and -41 side chains, allowing, and, in the case of negatively charged side chains, also facilitating, attack of a ligand cysteine by the incoming positively charged species (H(+), Cd(2+), or Zn(2+)). Thus, localized charge density and solvent accessibility modulate the stability of Fe(2+) ligation in rubredoxin. However, the reduced [Fe(SCys)(4)] site does not control the thermostability of the native polypeptide fold of rubredoxin.


Asunto(s)
Clostridium/química , Rubredoxinas/química , Cadmio/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Hierro/química , Cinética , Leucina/genética , Ligandos , Modelos Moleculares , Concentración Osmolar , Mutación Puntual , Conformación Proteica , Rubredoxinas/genética , Temperatura , Valina/genética , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...