Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(4): 231991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38633354

RESUMEN

Cable bacteria are long, filamentous bacteria with a unique metabolism involving centimetre-scale electron transport. They are widespread in the sediment of seasonally hypoxic systems and their metabolic activity stimulates the dissolution of iron sulfides (FeS), releasing large quantities of ferrous iron (Fe2+) into the pore water. Upon contact with oxygen, Fe2+ oxidation forms a layer of iron(oxyhydr)oxides (FeOx), which in its turn can oxidize free sulfide (H2S) and trap phosphorus (P) diffusing upward. The metabolism of cable bacteria could thus prevent the release of H2S from the sediment and reduce the risk of euxinia, while at the same time modulating P release over seasonal timescales. However, experimental support for this so-called 'iron firewall hypothesis' is scarce. Here, we collected natural sediment in a seasonally hypoxic basin in three different seasons. Undisturbed sediment cores were incubated under anoxic conditions and the effluxes of H2S, dissolved iron (dFe) and phosphate (PO4 3-) were monitored for up to 140 days. Cores with recent cable bacterial activity revealed a high stock of sedimentary FeOx, which delayed the efflux of H2S for up to 102 days. Our results demonstrate that the iron firewall mechanism could exert an important control on the prevalence of euxinia and regulate the P release in coastal oceans.

2.
Front Microbiol ; 14: 1008293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910179

RESUMEN

Cable bacteria are centimeters-long filamentous bacteria that oxidize sulfide in anoxic sediment layers and reduce oxygen at the oxic-anoxic interface, connecting these reactions via electron transport. The ubiquitous cable bacteria have a major impact on sediment geochemistry and microbial communities. This includes diverse bacteria swimming around cable bacteria as dense flocks in the anoxic zone, where the cable bacteria act as chemotactic attractant. We hypothesized that flocking only appears when cable bacteria are highly abundant and active. We set out to discern the timing and drivers of flocking over 81 days in an enrichment culture of the freshwater cable bacterium Candidatus Electronema aureum GS by measuring sediment microprofiles of pH, oxygen, and electric potential as a proxy of cable bacteria activity. Cable bacterial relative abundance was quantified by 16S rRNA amplicon sequencing, and microscopy observations to determine presence of flocking. Flocking was always observed at some cable bacteria, irrespective of overall cable bacteria rRNA abundance, activity, or sediment pH. Diverse cell morphologies of flockers were observed, suggesting that flocking is not restricted to a specific, single bacterial associate. This, coupled with their consistent presence supports a common mechanism of interaction, likely interspecies electron transfer via electron shuttles. Flocking appears exclusively linked to the electron conducting activity of the individual cable bacteria.

3.
Front Microbiol ; 13: 907976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910627

RESUMEN

Eutrophication and global change are increasing the occurrence of seasonal hypoxia (bottom-water oxygen concentration <63 µM) in coastal systems worldwide. In extreme cases, the bottom water can become completely anoxic, allowing sulfide to escape from the sediments and leading to the development of bottom-water euxinia. In seasonally hypoxic coastal basins, electrogenic sulfur oxidation by long, filamentous cable bacteria has been shown to stimulate the formation of an iron oxide layer near the sediment-water interface, while the bottom waters are oxygenated. Upon the development of bottom-water anoxia, this iron oxide "firewall" prevents the sedimentary release of sulfide. Iron oxides also act as an adsorption trap for elements such as arsenic. Arsenic is a toxic trace metal, and its release from sediments can have a negative impact on marine ecosystems. Yet, it is currently unknown how electrogenic sulfur oxidation impacts arsenic cycling in seasonally hypoxic basins. In this study, we presented results from a seasonal field study of an uncontaminated marine lake, complemented with a long-term sediment core incubation experiment, which reveals that cable bacteria have a strong impact on the arsenic cycle in a seasonally hypoxic system. Electrogenic sulfur oxidation significantly modulates the arsenic fluxes over a seasonal time scale by enriching arsenic in the iron oxide layer near the sediment-water interface in the oxic period and pulse-releasing arsenic during the anoxic period. Fluxes as large as 20 µmol m-2 day-1 were measured, which are comparable to As fluxes reported from highly contaminated sediments. Since cable bacteria are recognized as active components of the microbial community in seasonally hypoxic systems worldwide, this seasonal amplification of arsenic fluxes is likely a widespread phenomenon.

4.
New Phytol ; 232(5): 2138-2151, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33891715

RESUMEN

Cable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored. Using newly generated and public 16S rRNA gene sequence datasets combined with fluorescence in situ hybridisation, we investigated the distribution of cable bacteria around the roots of aquatic plants, encompassing seagrass (including seagrass seedlings), rice, freshwater and saltmarsh plants. Diverse cable bacteria were found associated with roots of 16 out of 28 plant species and at 36 out of 55 investigated sites, across four continents. Plant-associated cable bacteria were confirmed across a variety of ecosystems, including marine coastal environments, estuaries, freshwater streams, isolated pristine lakes and intensive agricultural systems. This pattern indicates that this plant-microbe relationship is globally widespread and neither obligate nor species specific. The occurrence of cable bacteria in plant rhizospheres may be of general importance to vegetation vitality, primary productivity, coastal restoration practices and greenhouse gas balance of rice fields and wetlands.


Asunto(s)
Ecosistema , Oxígeno , Bacterias/genética , Sedimentos Geológicos , Raíces de Plantas , ARN Ribosómico 16S/genética , Rizosfera
5.
Environ Microbiol ; 23(5): 2605-2616, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760391

RESUMEN

Cable bacteria (CB) are Desulfobulbaceae that couple sulphide oxidation to oxygen reduction over centimetre distances by mediating electric currents. Recently, it was suggested that the CB clade is composed of two genera, Ca. Electronema and Ca. Electrothrix, with distinct freshwater and marine habitats respectively. However, only a few studies have reported CB from freshwater sediment, making this distinction uncertain. Here, we report novel data to show that salinity is a controlling factor for the diversity and the species composition within CB populations. CB sampled from a freshwater site (salinity 0.3) grouped into Ca. Electronema and could not grow under brackish conditions (salinity 21), whereas CB from a brackish site (salinity 21) grouped into Ca. Electrothrix and decreased by 93% in activity under freshwater conditions. On a regional scale (Baltic Sea), salinity significantly influenced species richness and composition. However, other environmental factors, such as temperature and quantity and quality of organic matter were also important to explain the observed variation. A global survey of 16S rRNA gene amplicon sequencing revealed that the two genera did not co-occur likely because of competitive exclusion and identified a possible third genus.


Asunto(s)
Deltaproteobacteria , Salinidad , Bacterias/genética , Deltaproteobacteria/genética , Filogenia , ARN Ribosómico 16S/genética
6.
Proc Natl Acad Sci U S A ; 112(43): 13278-83, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26446670

RESUMEN

Seasonal oxygen depletion (hypoxia) in coastal bottom waters can lead to the release and persistence of free sulfide (euxinia), which is highly detrimental to marine life. Although coastal hypoxia is relatively common, reports of euxinia are less frequent, which suggests that certain environmental controls can delay the onset of euxinia. However, these controls and their prevalence are poorly understood. Here we present field observations from a seasonally hypoxic marine basin (Grevelingen, The Netherlands), which suggest that the activity of cable bacteria, a recently discovered group of sulfur-oxidizing microorganisms inducing long-distance electron transport, can delay the onset of euxinia in coastal waters. Our results reveal a remarkable seasonal succession of sulfur cycling pathways, which was observed over multiple years. Cable bacteria dominate the sediment geochemistry in winter, whereas, after the summer hypoxia, Beggiatoaceae mats colonize the sediment. The specific electrogenic metabolism of cable bacteria generates a large buffer of sedimentary iron oxides before the onset of summer hypoxia, which captures free sulfide in the surface sediment, thus likely preventing the development of bottom water euxinia. As cable bacteria are present in many seasonally hypoxic systems, this euxinia-preventing firewall mechanism could be widely active, and may explain why euxinia is relatively infrequently observed in the coastal ocean.


Asunto(s)
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Hierro/análisis , Estaciones del Año , Agua de Mar/química , Sulfuros/análisis , Thiotrichaceae/metabolismo , Anaerobiosis , Microelectrodos , Países Bajos , Oxidación-Reducción , Salinidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...