Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 18(11): 4055-4067, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27348808

RESUMEN

Thermal stress increases the incidence of coral disease, which is predicted to become more common with climate change, even on pristine reefs such as those surrounding Palmyra Atoll in the Northern Line Islands that experience minimal anthropogenic stress. Here we describe a strain of Vibrio coralliilyticus, OCN014, which was isolated from Acropora cytherea during an outbreak of Acropora white syndrome (AWS), a tissue loss disease that infected 25% of the A. cytherea population at Palmyra Atoll in 2009. OCN014 recreated signs of disease in experimentally infected corals in a temperature-dependent manner. Genes in OCN014 with expression levels positively correlated with temperature were identified using a transposon-mediated genetic screen. Mutant strains harbouring transposon insertions in two such genes, toxR (a toxin regulator) and mshA (the 11th gene of the 16-gene mannose-sensitive hemagglutinin (MSHA) type IV pilus operon), had reduced infectivity of A. cytherea. Deletion of toxR and the MSHA operon in a second strain of V. coralliilyticus, OCN008, that induces acute Montipora white syndrome in a temperature-independent manner had similarly reduced virulence. This work provides a link between temperature-dependent expression of virulence factors in a pathogen and infection of its coral host.


Asunto(s)
Antozoos/microbiología , Proteínas Bacterianas/genética , Mutación , Vibrio cholerae/metabolismo , Vibrio/fisiología , Animales , Proteínas Bacterianas/metabolismo , Cambio Climático , Fimbrias Bacterianas , Operón , Temperatura , Vibrio/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
J Bacteriol ; 197(2): 362-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384479

RESUMEN

Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream of trpE bound a central regulator of differentiation, HetR, in vitro and was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotype in vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in the trpE mutant.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Anabaena/citología , Anabaena/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
3.
Appl Environ Microbiol ; 80(7): 2102-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24463971

RESUMEN

Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited number of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in Kane'ohe Bay, Hawai'i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 10(7) and 10(8) CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. Temperature-dependent bleaching, which has been observed with the V. coralliilyticus type strain BAA-450, was not observed during infection with OCN008. A comparison of the OCN008 genome to the genomes of pathogenic V. coralliilyticus strains BAA-450 and P1 revealed similar virulence-associated genes and quorum-sensing systems. Despite this genetic similarity, infections of M. capitata by OCN008 do not follow the paradigm for V. coralliilyticus infections established by the type strain.


Asunto(s)
Antozoos/microbiología , Vibrio/aislamiento & purificación , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genotipo , Hawaii , Especificidad del Huésped , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura , Vibrio/genética , Vibrio/fisiología , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...