Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(15): 151002, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897756

RESUMEN

We present the precision measurements of 11 years of daily cosmic positron fluxes in the rigidity range from 1.00 to 41.9 GV based on 3.4×10^{6} positrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The positron fluxes show distinctly different time variations from the electron fluxes at short and long timescales. A hysteresis between the electron fluxes and the positron fluxes is observed with a significance greater than 5σ at rigidities below 8.5 GV. On the contrary, the positron fluxes and the proton fluxes show similar time variation. Remarkably, we found that positron fluxes are modulated more than proton fluxes with a significance greater than 5σ for rigidities below 7 GV. These continuous daily positron fluxes, together with AMS daily electron, proton, and helium fluxes over an 11-year solar cycle, provide unique input to the understanding of both the charge-sign and mass dependencies of cosmic rays in the heliosphere.

2.
Phys Rev Lett ; 130(21): 211002, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295095

RESUMEN

We report the properties of primary cosmic-ray sulfur (S) in the rigidity range 2.15 GV to 3.0 TV based on 0.38×10^{6} sulfur nuclei collected by the Alpha Magnetic Spectrometer experiment (AMS). We observed that above 90 GV the rigidity dependence of the S flux is identical to the rigidity dependence of Ne-Mg-Si fluxes, which is different from the rigidity dependence of the He-C-O-Fe fluxes. We found that, similar to N, Na, and Al cosmic rays, over the entire rigidity range, the traditional primary cosmic rays S, Ne, Mg, and C all have sizeable secondary components, and the S, Ne, and Mg fluxes are well described by the weighted sum of the primary silicon flux and the secondary fluorine flux, and the C flux is well described by the weighted sum of the primary oxygen flux and the secondary boron flux. The primary and secondary contributions of the traditional primary cosmic-ray fluxes of C, Ne, Mg, and S (even Z elements) are distinctly different from the primary and secondary contributions of the N, Na, and Al (odd Z elements) fluxes. The abundance ratio at the source for S/Si is 0.167±0.006, for Ne/Si is 0.833±0.025, for Mg/Si is 0.994±0.029, and for C/O is 0.836±0.025. These values are determined independent of cosmic-ray propagation.


Asunto(s)
Carbono , Magnesio , Neón , Azufre , Fenómenos Magnéticos
3.
Phys Rev Lett ; 130(16): 161001, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37154630

RESUMEN

We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval from 1.00 to 41.9 GV based on 2.0×10^{8} electrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The electron fluxes exhibit variations on multiple timescales. Recurrent electron flux variations with periods of 27 days, 13.5 days, and 9 days are observed. We find that the electron fluxes show distinctly different time variations from the proton fluxes. Remarkably, a hysteresis between the electron flux and the proton flux is observed with a significance of greater than 6σ at rigidities below 8.5 GV. Furthermore, significant structures in the electron-proton hysteresis are observed corresponding to sharp structures in both fluxes. This continuous daily electron data provide unique input to the understanding of the charge sign dependence of cosmic rays over an 11-year solar cycle.

4.
Phys Rev Lett ; 128(23): 231102, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749176

RESUMEN

We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on 7.6×10^{8} helium nuclei collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The helium flux and the helium to proton flux ratio exhibit variations on multiple timescales. In nearly all the time intervals from 2014 to 2018, we observed recurrent helium flux variations with a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and rigidity. In the entire time period, we found that below ∼7 GV the helium flux exhibits larger time variations than the proton flux, and above ∼7 GV the helium to proton flux ratio is time independent. Remarkably, below 2.4 GV a hysteresis between the helium to proton flux ratio and the helium flux was observed at greater than the 7σ level. This shows that at low rigidity the modulation of the helium to proton flux ratio is different before and after the solar maximum in 2014.

6.
Phys Rev Lett ; 127(2): 021101, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296911

RESUMEN

We report the properties of sodium (Na) and aluminum (Al) cosmic rays in the rigidity range 2.15 GV to 3.0 TV based on 0.46 million sodium and 0.51 million aluminum nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. We found that Na and Al, together with nitrogen (N), belong to a distinct cosmic ray group. In this group, we observe that, similar to the N flux, both the Na flux and Al flux are well described by the sums of a primary cosmic ray component (proportional to the silicon flux) and a secondary cosmic ray component (proportional to the fluorine flux). The fraction of the primary component increases with rigidity for the N, Na, and Al fluxes and becomes dominant at the highest rigidities. The Na/Si and Al/Si abundance ratios at the source, 0.036±0.003 for Na/Si and 0.103±0.004 for Al/Si, are determined independent of cosmic ray propagation.

7.
Phys Rev Lett ; 126(8): 081102, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709764

RESUMEN

Precise knowledge of the charge and rigidity dependence of the secondary cosmic ray fluxes and the secondary-to-primary flux ratios is essential in the understanding of cosmic ray propagation. We report the properties of heavy secondary cosmic ray fluorine F in the rigidity R range 2.15 GV to 2.9 TV based on 0.29 million events collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The fluorine spectrum deviates from a single power law above 200 GV. The heavier secondary-to-primary F/Si flux ratio rigidity dependence is distinctly different from the lighter B/O (or B/C) rigidity dependence. In particular, above 10 GV, the F/Si/B/O ratio can be described by a power law R^{δ} with δ=0.052±0.007. This shows that the propagation properties of heavy cosmic rays, from F to Si, are different from those of light cosmic rays, from He to O, and that the secondary cosmic rays have two classes.

8.
Phys Rev Lett ; 126(4): 041104, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33576661

RESUMEN

We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62×10^{6} iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155±0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class.

9.
Phys Rev Lett ; 127(27): 271102, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061443

RESUMEN

We present the precision measurement of the daily proton fluxes in cosmic rays from May 20, 2011 to October 29, 2019 (a total of 2824 days or 114 Bartels rotations) in the rigidity interval from 1 to 100 GV based on 5.5×10^{9} protons collected with the Alpha Magnetic Spectrometer aboard the International Space Station. The proton fluxes exhibit variations on multiple timescales. From 2014 to 2018, we observed recurrent flux variations with a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and rigidity. The rigidity dependence of the 27-day periodicity is different from the rigidity dependences of 9-day and 13.5-day periods. Unexpectedly, the strength of 9-day and 13.5-day periodicities increases with increasing rigidities up to ∼10 GV and ∼20 GV, respectively. Then the strength of the periodicities decreases with increasing rigidity up to 100 GV.

10.
Phys Rev Lett ; 124(21): 211102, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530660

RESUMEN

We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8×10^{6} Ne, 2.2×10^{6} Mg, and 1.6×10^{6} Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays.

11.
Phys Rev Lett ; 123(18): 181102, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763896

RESUMEN

Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of ^{3}He and ^{4}He fluxes are presented. The measurements are based on 100 million ^{4}He nuclei in the rigidity range from 2.1 to 21 GV and 18 million ^{3}He from 1.9 to 15 GV collected from May 2011 to November 2017. We observed that the ^{3}He and ^{4}He fluxes exhibit nearly identical variations with time. The relative magnitude of the variations decreases with increasing rigidity. The rigidity dependence of the ^{3}He/^{4}He flux ratio is measured for the first time. Below 4 GV, the ^{3}He/^{4}He flux ratio was found to have a significant long-term time dependence. Above 4 GV, the ^{3}He/^{4}He flux ratio was found to be time independent, and its rigidity dependence is well described by a single power law ∝R^{Δ} with Δ=-0.294±0.004. Unexpectedly, this value is in agreement with the B/O and B/C spectral indices at high energies.

12.
Phys Rev Lett ; 122(10): 101101, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932626

RESUMEN

Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1×10^{6} electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux exhibits a significant excess starting from 42.1_{-5.2}^{+5.4} GeV compared to the lower energy trends, but the nature of this excess is different from the positron flux excess above 25.2±1.8 GeV. Contrary to the positron flux, which has an exponential energy cutoff of 810_{-180}^{+310} GeV, at the 5σ level the electron flux does not have an energy cutoff below 1.9 TeV. In the entire energy range the electron flux is well described by the sum of two power law components. The different behavior of the cosmic-ray electrons and positrons measured by the Alpha Magnetic Spectrometer is clear evidence that most high energy electrons originate from different sources than high energy positrons.

13.
Phys Rev Lett ; 122(4): 041102, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768313

RESUMEN

Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2±1.8 GeV compared to the lower-energy, power-law trend, (b) a sharp dropoff above 284_{-64}^{+91} GeV, (c) in the entire energy range the positron flux is well described by the sum of a term associated with the positrons produced in the collision of cosmic rays, which dominates at low energies, and a new source term of positrons, which dominates at high energies, and (d) a finite energy cutoff of the source term of E_{s}=810_{-180}^{+310} GeV is established with a significance of more than 4σ. These experimental data on cosmic ray positrons show that, at high energies, they predominantly originate either from dark matter annihilation or from other astrophysical sources.

14.
Phys Rev Lett ; 121(5): 051103, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30118280

RESUMEN

A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2×10^{6} events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of primary He, C, and O cosmic rays above ∼700 GV. We observed that the nitrogen flux Φ_{N} can be presented as the sum of its primary component Φ_{N}^{P} and secondary component Φ_{N}^{S}, Φ_{N}=Φ_{N}^{P}+Φ_{N}^{S}, and we found Φ_{N} is well described by the weighted sum of the oxygen flux Φ_{O} (primary cosmic rays) and the boron flux Φ_{B} (secondary cosmic rays), with Φ_{N}^{P}=(0.090±0.002)×Φ_{O} and Φ_{N}^{S}=(0.62±0.02)×Φ_{B} over the entire rigidity range. This corresponds to a change of the contribution of the secondary cosmic ray component in the nitrogen flux from 70% at a few GV to <30% above 1 TV.

15.
Phys Rev Lett ; 120(2): 021101, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376729

RESUMEN

We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4×10^{6} nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li/Be flux ratio of 2.0±0.1. The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.

16.
Phys Rev Lett ; 119(25): 251101, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303302

RESUMEN

We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90×10^{6} helium, 8.4×10^{6} carbon, and 7.0×10^{6} oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way.

17.
Life Sci Space Res (Amst) ; 8: 22-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26948010

RESUMEN

Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat.


Asunto(s)
Radiación Cósmica , Método de Montecarlo , Astronautas , Dosis de Radiación , Vuelo Espacial
18.
Phys Rev Lett ; 101(23): 234801, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19113559

RESUMEN

The trend of volume reflection parameters (deflection angle and efficiency) in a bent (110) silicon crystal has been investigated as a function of the crystal curvature with 400 GeV/c protons on the H8 beam line at the CERN Super Proton Synchrotron. This Letter describes the analysis performed at six different curvatures showing that the optimal radius for volume reflection is approximately 10 times greater than the critical radius for channeling. A strong scattering of the beam by the planar potential is also observed for a bend radius close to the critical one.

19.
J Chromatogr A ; 1186(1-2): 245-53, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17920608

RESUMEN

Using gas chromatography with flame ionization detection and electroantennographic detection in parallel (GC-FID/EAD), the active constituents of the sex attractant of male dung beetles of Kheper bonellii were located in the gas chromatogram of an extract of the secretion. These constituents were identified as propanoic acid, butanoic acid, indole, 3-methylindole (skatole) and methyl cis-cascarillate (methyl cis-2-2'-hexylcyclopropylacetate) by, inter alia, GC-MS, (1)H and (13)C NMR analysis, and synthesis. These compounds elicited EAD responses in male as well as female antennae. Racemic methyl cis-cascarillate was synthesized for comparison with the natural methyl ester. Enantioselective GC-FID/EAD using a capillary column coated with OV-1701-OH containing 10% heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin showed that the natural compound co-eluted with the first-eluting enantiomer of the racemic methyl cis-cascarillate, which was the only enantiomer that elicited EAD responses in the antennae of male and female K. bonellii. The absolute configuration of this enantiomer was established by a stereoselective synthesis, which gave methyl (R,R)-cascarillate [methyl (1'R,2'R)-2-2'-hexylcyclopropylacetate] in an enantiomeric excess of 69%.


Asunto(s)
Abdomen , Cromatografía de Gases/métodos , Escarabajos/química , Feromonas/análisis , Atractivos Sexuales/análisis , Animales , Ionización de Llama , Espectroscopía de Resonancia Magnética , Masculino , Feromonas/química , Atractivos Sexuales/química , Estereoisomerismo , Extractos de Tejidos
20.
Radiat Prot Dosimetry ; 116(1-4 Pt 2): 216-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16604630

RESUMEN

The Alpha Magnetic Spectrometer (AMS01), a high-sensitivity particle spectrometer, was successfully flown for 10 d in June 1998 (STS91) in the orbit of the International Space Station (51.7 degrees, -380 km). A high-statistics dataset of galactic cosmic rays were measured as a function of geomagnetic latitude, including the primary protons, leptons and helium as well as the trapped and quasi-trapped proton and lepton components. In this paper, the absorbed dose rate owing to the protons, leptons and helium are presented and compared with measurements made by other instruments flown on the same mission.


Asunto(s)
Radiación Cósmica , Partículas Elementales , Helio/análisis , Modelos Biológicos , Monitoreo de Radiación/métodos , Vuelo Espacial , Análisis Espectral/métodos , Carga Corporal (Radioterapia) , Simulación por Computador , Protones , Dosis de Radiación , Efectividad Biológica Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...