Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 35(37): 12703-13, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377460

RESUMEN

SORLA is a neuronal sorting receptor implicated both in sporadic and familial forms of AD. SORLA reduces the amyloidogenic burden by two mechanisms, either by rerouting internalized APP molecules from endosomes to the trans-Golgi network (TGN) to prevent proteolytic processing or by directing newly produced Aß to lysosomes for catabolism. Studies in cell lines suggested that the interaction of SORLA with cytosolic adaptors retromer and GGA is required for receptor sorting to and from the TGN. However, the relevance of anterograde or retrograde trafficking for SORLA activity in vivo remained largely unexplored. Here, we generated mouse models expressing SORLA variants lacking binding sites for GGA or retromer to query this concept in the brain. Disruption of retromer binding resulted in a retrograde-sorting defect with accumulation of SORLA in endosomes and depletion from the TGN, and in an overall enhanced APP processing. In contrast, disruption of the GGA interaction did not impact APP processing but caused increased brain Aß levels, a mechanism attributed to a defect in anterograde lysosomal targeting of Aß. Our findings substantiated the significance of adaptor-mediated sorting for SORLA activities in vivo, and they uncovered that anterograde and retrograde sorting paths may serve discrete receptor functions in amyloidogenic processes. SIGNIFICANCE STATEMENT: SORLA is a sorting receptor that directs target proteins to distinct intracellular compartments in neurons. SORLA has been identified as a genetic risk factor for sporadic, but recently also for familial forms of AD. To confirm the relevance of SORLA sorting for AD processes in the brain, we generated mouse lines, which express trafficking mutants instead of the wild-type form of this receptor. Studying neuronal activities in these mutant mice, we dissected distinct trafficking routes for SORLA guided by two cytosolic adaptors termed GGA and retromer. We show that these sorting pathways serve discrete functions in control of amyloidogenic processes and may represent unique therapeutic targets to interfere with specific aspects of neurodegenerative processes in the diseased brain.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas con Receptor de LDL/fisiología , Proteínas de Transporte de Membrana/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Animales , Sitios de Unión , Línea Celular , Endosomas/metabolismo , Femenino , Hipocampo/citología , Proteínas Relacionadas con Receptor de LDL/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , ARN no Traducido/genética , Proteínas Recombinantes de Fusión/metabolismo , Red trans-Golgi/metabolismo
2.
Sci Transl Med ; 6(223): 223ra20, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24523320

RESUMEN

SORLA/SORL1 is a unique neuronal sorting receptor for the amyloid precursor protein that has been causally implicated in both sporadic and autosomal dominant familial forms of Alzheimer's disease (AD). Brain concentrations of SORLA are inversely correlated with amyloid-ß (Aß) in mouse models and AD patients, suggesting that increasing expression of this receptor could be a therapeutic option for decreasing the amount of amyloidogenic products in affected individuals. We characterize a new mouse model in which SORLA is overexpressed, and show a decrease in Aß concentrations in mouse brain. We trace the underlying molecular mechanism to the ability of this receptor to direct lysosomal targeting of nascent Aß peptides. Aß binds to the amino-terminal VPS10P domain of SORLA, and this binding is impaired by a familial AD mutation in SORL1. Thus, loss of SORLA's Aß sorting function is a potential cause of AD in patients, and SORLA may be a new therapeutic target for AD drug development.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Transgénicos
3.
Mol Cell Biol ; 33(21): 4308-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24001769

RESUMEN

Sorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aß peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored. We focused on the interaction of SORLA with phosphofurin acidic cluster sorting protein 1 (PACS1), an adaptor that shuttles proteins between the trans-Golgi network (TGN) and endosomes. By studying PACS1 knockdown in neuronal cell lines and investigating transgenic mice expressing a PACS1-binding-defective mutant form of SORLA, we found that disruption of SORLA and PACS1 interaction results in the inability of SORLA/APP complexes to sort to the TGN in neurons and in increased APP processing in the brain. Loss of PACS1 also impairs the proper expression of the cation-independent mannose 6-phosphate receptor and its target cathepsin B, a protease that breaks down Aß. Thus, our data identified the importance of PACS1-dependent protein sorting for amyloidogenic-burden control via both SORLA-dependent and SORLA-independent mechanisms.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Relacionadas con Receptor de LDL/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Catepsina B/biosíntesis , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Relacionadas con Receptor de LDL/química , Proteínas de Transporte de Membrana/química , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Receptor IGF Tipo 2/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
4.
J Neurosci ; 33(1): 358-70, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23283348

RESUMEN

Apolipoprotein E (APOE) is the major risk factor for sporadic Alzheimer's disease. Among other functions, APOE is proposed to sequester neurotoxic amyloid-ß (Aß) peptides in the brain, delivering them to cellular catabolism via neuronal APOE receptors. Still, the receptors involved in this process remain controversial. Here, we identified the pro-neurotrophin receptor sortilin as major endocytic pathway for clearance of APOE/Aß complexes in neurons. Sortilin binds APOE with high affinity. Lack of receptor expression in mice results in accumulation of APOE and of Aß in the brain and in aggravated plaque burden. Also, primary neurons lacking sortilin exhibit significantly impaired uptake of APOE/Aß complexes despite proper expression of other APOE receptors. Despite higher than normal brain APOE levels, sortilin-deficient animals display anomalies in brain lipid metabolism (e.g., accumulation of sulfatides) seen in APOE-deficient mice, indicating functional deficiency in cellular APOE uptake pathways. Together, our findings identified sortilin as an essential neuronal pathway for APOE-containing lipoproteins in vivo and suggest an intriguing link between Aß catabolism and pro-neurotrophin signaling converging on this receptor.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Neuronas/metabolismo , Animales , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Ratones , Placa Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA