Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915588

RESUMEN

ECHS1 Deficiency (ECHS1D) is a rare and devastating pediatric disease that currently has no defined treatments. This disorder results from missense loss-of-function mutations in the ECHS1 gene that result in severe developmental delays, encephalopathy, hypotonia, and early death. ECHS1 enzymatic activity is necessary for the beta-oxidation of fatty acids and the oxidation of branched-chain amino acids within the inner mitochondrial matrix. The pathogenesis of disease remains unknown, however it is hypothesized that disease is driven by an accumulation of toxic metabolites from impaired valine oxidation. To expand our knowledge on disease mechanisms, a novel mouse model of ECHS1D was generated that possesses a disease-associated knock-in (KI) allele and a knock-out (KO) allele. To investigate the behavioral phenotype, a battery of testing was performed at multiple time points, which included assessments of learning, motor function, endurance, sensory responses, and anxiety. Neurological abnormalities were assessed using wireless telemetry EEG recordings, pentylenetetrazol (PTZ) seizure induction, and immunohistochemistry. Metabolic perturbations were measured within the liver, serum, and brain using mass spectrometry and magnetic resonance spectroscopy. To test disease mechanisms, mice were subjected to disease pathway stressors and then survival, body weight gain, and epilepsy were assessed. Mice containing KI/KI or KI/KO alleles were viable with normal development and survival, and the presence of KI and KO alleles resulted in a significant reduction in ECHS1 protein. ECHS1D mice displayed reduced exercise capacity and pain sensation. EEG analysis revealed increased slow wave power that was associated with perturbations in sleep. ECHS1D mice had significantly increased epileptiform EEG discharges, and were sensitive to seizure induction, which resulted in death of 60% of ECHS1D mice. Under basal conditions, brain structure was grossly normal, although histological analysis revealed increased microglial activation in aged ECHS1D mice. Increased dietary valine only affected ECHS1D mice, which significantly exacerbated seizure susceptibility and resulted in death. Lastly, acute inflammatory challenge drove regression and early lethality in ECHS1D mice. In conclusion, we developed a novel model of ECHS1D that may be used to further knowledge on disease mechanisms and to develop therapeutics. Our data suggests altered metabolic signaling and inflammation may contribute to epilepsy in ECHS1D, and these alterations may be attributed to impaired valine metabolism.

2.
J Biol Chem ; 300(7): 107412, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796064

RESUMEN

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.

3.
Cell Metab ; 36(5): 1088-1104.e12, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38447582

RESUMEN

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.


Asunto(s)
Acetil-CoA Carboxilasa , Aminoácidos , Gluconeogénesis , Hígado , Malonil Coenzima A , Ratones Noqueados , Oxidación-Reducción , Animales , Malonil Coenzima A/metabolismo , Hígado/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ratones , Aminoácidos/metabolismo , Masculino , Piruvato Carboxilasa/metabolismo , Ciclo del Ácido Cítrico , Ácido Pirúvico/metabolismo , Ratones Endogámicos C57BL , Ayuno/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo
4.
iScience ; 26(11): 108196, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37942005

RESUMEN

The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice.

5.
Nat Commun ; 14(1): 6531, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848446

RESUMEN

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Asunto(s)
Adiponectina , Gluconeogénesis , Riñón , Animales , Masculino , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ácido Pirúvico/metabolismo
6.
bioRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865319

RESUMEN

Mitochondrial reactive oxygen species (mROS) are central to physiology. While excess mROS production has been associated with several disease states, its precise sources, regulation, and mechanism of generation in vivo remain unknown, limiting translational efforts. Here we show that in obesity, hepatic ubiquinone (Q) synthesis is impaired, which raises the QH 2 /Q ratio, driving excessive mROS production via reverse electron transport (RET) from site I Q in complex I. Using multiple complementary genetic and pharmacological models in vivo we demonstrated that RET is critical for metabolic health. In patients with steatosis, the hepatic Q biosynthetic program is also suppressed, and the QH 2 /Q ratio positively correlates with disease severity. Our data identify a highly selective mechanism for pathological mROS production in obesity, which can be targeted to protect metabolic homeostasis.

7.
J Clin Invest ; 133(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36928190

RESUMEN

BACKGROUNDHepatic de novo lipogenesis (DNL) and ß-oxidation are tightly coordinated, and their dysregulation is thought to contribute to the pathogenesis of nonalcoholic fatty liver (NAFL). Fasting normally relaxes DNL-mediated inhibition of hepatic ß-oxidation, dramatically increasing ketogenesis and decreasing reliance on the TCA cycle. Thus, we tested whether aberrant oxidative metabolism in fasting NAFL subjects is related to the inability to halt fasting DNL.METHODSForty consecutive nondiabetic individuals with and without a history of NAFL were recruited for this observational study. After phenotyping, subjects fasted for 24 hours, and hepatic metabolism was interrogated using a combination of 2H2O and 13C tracers, magnetic resonance spectroscopy, and high-resolution mass spectrometry.RESULTSWithin a subset of subjects, DNL was detectable after a 24-hour fast and was more prominent in those with NAFL, though it was poorly correlated with steatosis. However, fasting DNL negatively correlated with hepatic ß-oxidation and ketogenesis and positively correlated with citrate synthesis. Subjects with NAFL but undetectable fasting DNL (25th percentile) were comparatively normal. However, those with the highest fasting DNL (75th percentile) were intransigent to the effects of fasting on the concentration of insulin, non-esterified fatty acid, and ketones. Additionally, they sustained glycogenolysis and were spared the loss of oxaloacetate to gluconeogenesis in favor of citrate synthesis, which correlated with DNL and diminished ketogenesis.CONCLUSIONMetabolic flux analysis in fasted subjects indicates that shared metabolic mechanisms link the dysregulations of hepatic DNL, ketogenesis, and the TCA cycle in NAFL.TRIAL REGISTRATIONData were obtained during the enrollment/non-intervention phase of Effect of Vitamin E on Non-Alcoholic Fatty Liver Disease, ClinicalTrials.gov NCT02690792.FUNDINGThis work was supported by the University of Texas Southwestern NORC Quantitative Metabolism Core (NIH P30DK127984), the NIH/National Institute of Diabetes and Digestive and Kidney Diseases (R01DK078184, R01DK128168, R01DK087977, R01DK132254, and K01DK133630), the NIH/National Institute on Alcohol Abuse and Alcoholism (K01AA030327), and the Robert A. Welch Foundation (I-1804).


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lipogénesis/fisiología , Ácido Cítrico , Hígado/metabolismo , Cuerpos Cetónicos/metabolismo , Citratos/metabolismo , Ayuno
8.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36824879

RESUMEN

The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by liver MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway essentially reversing glycolysis and an indirect mitochondrial pathway requiring the MPC. MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites but not into newly synthesized glucose. However, suppression of glycerol metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice. Thus, glucose production by kidney and intestine may compensate for MPC deficiency in hepatocytes.

9.
Am J Physiol Endocrinol Metab ; 324(1): E9-E23, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351254

RESUMEN

Acute exercise increases liver gluconeogenesis to supply glucose to working muscles. Concurrently, elevated liver lipid breakdown fuels the high energetic cost of gluconeogenesis. This functional coupling between liver gluconeogenesis and lipid oxidation has been proposed to underlie the ability of regular exercise to enhance liver mitochondrial oxidative metabolism and decrease liver steatosis in individuals with nonalcoholic fatty liver disease. Herein we tested whether repeated bouts of increased hepatic gluconeogenesis are necessary for exercise training to lower liver lipids. Experiments used diet-induced obese mice lacking hepatic phosphoenolpyruvate carboxykinase 1 (KO) to inhibit gluconeogenesis and wild-type (WT) littermates. 2H/13C metabolic flux analysis quantified glucose and mitochondrial oxidative fluxes in untrained mice at rest and during acute exercise. Circulating and tissue metabolite levels were determined during sedentary conditions, acute exercise, and refeeding postexercise. Mice also underwent 6 wk of treadmill running protocols to define hepatic and extrahepatic adaptations to exercise training. Untrained KO mice were unable to maintain euglycemia during acute exercise resulting from an inability to increase gluconeogenesis. Liver triacylglycerides were elevated after acute exercise and circulating ß-hydroxybutyrate was higher during postexercise refeeding in untrained KO mice. In contrast, exercise training prevented liver triacylglyceride accumulation in KO mice. This was accompanied by pronounced increases in indices of skeletal muscle mitochondrial oxidative metabolism in KO mice. Together, these results show that hepatic gluconeogenesis is dispensable for exercise training to reduce liver lipids. This may be due to responses in ketone body metabolism and/or metabolic adaptations in skeletal muscle to exercise.NEW & NOTEWORTHY Exercise training reduces hepatic steatosis partly through enhanced hepatic terminal oxidation. During acute exercise, hepatic gluconeogenesis is elevated to match the heightened rate of muscle glucose uptake and maintain glucose homeostasis. It has been postulated that the hepatic energetic stress induced by elevating gluconeogenesis during acute exercise is a key stimulus underlying the beneficial metabolic responses to exercise training. This study shows that hepatic gluconeogenesis is not necessary for exercise training to lower liver lipids.


Asunto(s)
Glucosa , Hígado , Ratones , Animales , Fosfoenolpiruvato/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Gluconeogénesis , Ácido 3-Hidroxibutírico/metabolismo
11.
Cell Metab ; 34(5): 658-660, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508108

RESUMEN

In a recent issue of Nature, Arnold et al. report that the partitioning of citrate away from the oxidative steps of the tricarboxylic acid cycle and into the citrate-malate shuttle is essential for mouse embryonic stem cell differentiation. Their findings highlight a crucial role for metabolic regulation in developmental biology.


Asunto(s)
Citratos , Ciclo del Ácido Cítrico , Animales , Diferenciación Celular , Citratos/metabolismo , Ácido Cítrico , Ratones , Oxidación-Reducción
12.
Cell Rep ; 39(4): 110733, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476997

RESUMEN

Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, but the molecular mechanisms involved are incompletely understood. Alanine transaminases (ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) is downregulated following bariatric surgery in people with obesity. The increased hepatic expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates incorporation of 13C-alanine into newly synthesized glucose by hepatocytes. In vivo Gpt2 knockdown or knockout in liver has no effect on glucose concentrations in lean mice, but Gpt2 suppression alleviates hyperglycemia in db/db mice. These data suggest that ALT2 plays a significant role in hepatic gluconeogenesis from amino acids in diabetes.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Alanina/farmacología , Alanina Transaminasa/metabolismo , Aminoácidos/metabolismo , Animales , Diabetes Mellitus/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Obesidad/metabolismo
13.
Metab Eng ; 69: 275-285, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965470

RESUMEN

Metabolic flux analysis (MFA) combines experimental measurements and computational modeling to determine biochemical reaction rates in live biological systems. Advancements in analytical instrumentation, such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), have facilitated chemical separation and quantification of isotopically enriched metabolites. However, no software packages have been previously described that can integrate isotopomer measurements from both MS and NMR analytical platforms and have the flexibility to estimate metabolic fluxes from either isotopic steady-state or dynamic labeling experiments. By applying physiologically relevant cardiac and hepatic metabolic models to assess NMR isotopomer measurements, we herein test and validate new modeling capabilities of our enhanced flux analysis software tool, INCA 2.0. We demonstrate that INCA 2.0 can simulate and regress steady-state 13C NMR datasets from perfused hearts with an accuracy comparable to other established flux assessment tools. Furthermore, by simulating the infusion of three different 13C acetate tracers, we show that MFA based on dynamic 13C NMR measurements can more precisely resolve cardiac fluxes compared to isotopically steady-state flux analysis. Finally, we show that estimation of hepatic fluxes using combined 13C NMR and MS datasets improves the precision of estimated fluxes by up to 50%. Overall, our results illustrate how the recently added NMR data modeling capabilities of INCA 2.0 can enable entirely new experimental designs that lead to improved flux resolution and can be applied to a wide range of biological systems and measurement time courses.


Asunto(s)
Análisis de Flujos Metabólicos , Programas Informáticos , Isótopos de Carbono/metabolismo , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Análisis de Flujos Metabólicos/métodos , Modelos Biológicos
14.
Cell Mol Gastroenterol Hepatol ; 13(3): 879-899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34923175

RESUMEN

BACKGROUND & AIMS: Substitution of lysine for glutamic acid at residu 167 in Transmembrane 6 superfamily member 2 (TM6SF2) is associated with fatty liver disease and reduced plasma lipid levels. Tm6sf2-/- mice replicate the human phenotype but were not suitable for detailed mechanistic studies. As an alternative model, we generated Tm6sf2-/- rats to determine the subcellular location and function of TM6SF2. METHODS: Two lines of Tm6sf2-/- rats were established using gene editing. Lipids from tissues and from newly secreted very low density lipoproteins (VLDLs) were quantified using enzymatic assays and mass spectrometry. Neutral lipids were visualized in tissue sections using Oil Red O staining. The rate of dietary triglyceride (TG) absorption and hepatic VLDL-TG secretion were compared in Tm6sf2-/- mice and in their wild-type littermates. The intracellular location of TM6SF2 was determined by cell fractionation. Finally, TM6SF2 was immunoprecipitated from liver and enterocytes to identify interacting proteins. RESULTS: Tm6sf2-/- rats had a 6-fold higher mean hepatic TG content (56.1 ± 28.9 9 vs 9.8 ± 3.9 mg/g; P < .0001) and lower plasma cholesterol levels (99.0 ± 10.5 vs 110.6 ± 14.0 mg/dL; P = .0294) than their wild-type littermates. Rates of appearance of dietary and hepatic TG into blood were reduced significantly in Tm6sf2-/- rats (P < .001 and P < .01, respectively). Lipid content of newly secreted VLDLs isolated from perfused livers was reduced by 53% (TG) and 62% (cholesterol) (P = .005 and P = .01, respectively) in Tm6sf2-/- mice. TM6SF2 was present predominantly in the smooth endoplasmic reticulum and endoplasmic reticulum-Golgi intermediate compartments, but not in Golgi. Both apolipoprotein B-48 and acyl-CoA synthetase long chain family member 5 physically interacted with TM6SF2. CONCLUSIONS: TM6SF2 acts in the smooth endoplasmic reticulum to promote bulk lipidation of apolipoprotein B-containing lipoproteins, thus preventing fatty liver disease.


Asunto(s)
Proteínas de la Membrana , Enfermedad del Hígado Graso no Alcohólico , Animales , Proteínas de la Membrana/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas
15.
Annu Rev Nutr ; 41: 19-47, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34270333

RESUMEN

The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease.


Asunto(s)
Ciclo del Ácido Cítrico , Ciclo del Ácido Cítrico/fisiología , Humanos , Oxidación-Reducción
16.
Nat Commun ; 12(1): 3756, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145255

RESUMEN

De novo lipogenesis (DNL) is disrupted in a wide range of human disease. Thus, quantification of DNL may provide insight into mechanisms and guide interventions if it can be performed rapidly and noninvasively. DNL flux is commonly measured by 2H incorporation into fatty acids following deuterated water (2H2O) administration. However, the sensitivity of this approach is limited by the natural abundance of 13C, which masks detection of 2H by mass spectrometry. Here we report that high-resolution Orbitrap gas-chromatography mass-spectrometry resolves 2H and 13C fatty acid mass isotopomers, allowing DNL to be quantified using lower 2H2O doses and shorter experimental periods than previously possible. Serial measurements over 24-hrs in mice detects the nocturnal activation of DNL and matches a 3H-water method in mice with genetic activation of DNL. Most importantly, DNL is detected in overnight-fasted humans in less than an hour and is responsive to feeding during a 4-h study. Thus, 2H specific MS provides the ability to study DNL in settings that are currently impractical.


Asunto(s)
Ácidos Grasos/biosíntesis , Cromatografía de Gases y Espectrometría de Masas/métodos , Lipogénesis/fisiología , Hígado/metabolismo , Triglicéridos/biosíntesis , Animales , Deuterio/química , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Metab Eng ; 59: 1-14, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31891762

RESUMEN

Computational models based on the metabolism of stable isotope tracers can yield valuable insight into the metabolic basis of disease. The complexity of these models is limited by the number of tracers and the ability to characterize tracer labeling in downstream metabolites. NMR spectroscopy is ideal for multiple tracer experiments since it precisely detects the position of tracer nuclei in molecules, but it lacks sensitivity for detecting low-concentration metabolites. GC-MS detects stable isotope mass enrichment in low-concentration metabolites, but lacks nuclei and positional specificity. We performed liver perfusions and in vivo infusions of 2H and 13C tracers, yielding complex glucose isotopomers that were assigned by NMR and fit to a newly developed metabolic model. Fluxes regressed from 2H and 13C NMR positional isotopomer enrichments served to validate GC-MS-based flux estimates obtained from the same experimental samples. NMR-derived fluxes were largely recapitulated by modeling the mass isotopomer distributions of six glucose fragment ions measured by GC-MS. Modest differences related to limited fragmentation coverage of glucose C1-C3 were identified, but fluxes such as gluconeogenesis, glycogenolysis, cataplerosis and TCA cycle flux were tightly correlated between the methods. Most importantly, modeling of GC-MS data could assign fluxes in primary mouse hepatocytes, an experiment that is impractical by 2H or 13C NMR.


Asunto(s)
Ciclo del Ácido Cítrico , Gluconeogénesis , Hígado/metabolismo , Modelos Biológicos , Vía de Pentosa Fosfato , Animales , Isótopos de Carbono/análisis , Isótopos de Carbono/química , Isótopos de Carbono/farmacología , Masculino , Ratones , Resonancia Magnética Nuclear Biomolecular
18.
Cell Metab ; 29(4): 790-792, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943390

RESUMEN

delta-5 desaturase and delta-6 desaturase are enzymes known to be involved in the synthesis of highly unsaturated fatty acids. In this issue, Kim et al. (2019) show that production of NAD+ by this desaturase reaction is an adaptive response to NAD+ depletion that may regulate cellular REDOX status.


Asunto(s)
Ácidos Grasos Insaturados , NAD , Oxidorreductasas
19.
Anal Chem ; 91(9): 5881-5887, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30938977

RESUMEN

Intracellular nucleotides and acyl-CoAs are metabolites that are central to the regulation of energy metabolism. They set the cellular energy charge and redox state, act as allosteric regulators, modulate signaling and transcription factors, and thermodynamically activate substrates for oxidation or biosynthesis. Unfortunately, no method exists to simultaneously quantify these biomolecules in tissue extracts. A simple method was developed using ion-pairing reversed-phase high-performance liquid chromatography-electrospray-ionization tandem mass spectrometry (HPLC-ESI-MS/MS) to simultaneously quantify adenine nucleotides (AMP, ADP, and ATP), pyridine dinucleotides (NAD+ and NADH), and short-chain acyl-CoAs (acetyl, malonyl, succinyl, and propionyl). Quantitative analysis of these molecules in mouse liver was achieved using stable-isotope-labeled internal standards. The method was extensively validated by determining the linearity, accuracy, repeatability, and assay stability. Biological responsiveness was confirmed in assays of liver tissue with variable durations of ischemia, which had substantial effects on tissue energy charge and redox state. We conclude that the method provides a simple, fast, and reliable approach to the simultaneous analysis of nucleotides and short-chain acyl-CoAs.


Asunto(s)
Acilcoenzima A/análisis , Cromatografía Liquida/métodos , Hígado/metabolismo , Nucleótidos/análisis , Espectrometría de Masas en Tándem/métodos , Acilcoenzima A/metabolismo , Animales , Ratones , Nucleótidos/metabolismo
20.
Cell Metab ; 29(6): 1291-1305.e8, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31006591

RESUMEN

The hepatic TCA cycle supports oxidative and biosynthetic metabolism. This dual responsibility requires anaplerotic pathways, such as pyruvate carboxylase (PC), to generate TCA cycle intermediates necessary for biosynthesis without disrupting oxidative metabolism. Liver-specific PC knockout (LPCKO) mice were created to test the role of anaplerotic flux in liver metabolism. LPCKO mice have impaired hepatic anaplerosis, diminution of TCA cycle intermediates, suppressed gluconeogenesis, reduced TCA cycle flux, and a compensatory increase in ketogenesis and renal gluconeogenesis. Loss of PC depleted aspartate and compromised urea cycle function, causing elevated urea cycle intermediates and hyperammonemia. Loss of PC prevented diet-induced hyperglycemia and insulin resistance but depleted NADPH and glutathione, which exacerbated oxidative stress and correlated with elevated liver inflammation. Thus, despite catalyzing the synthesis of intermediates also produced by other anaplerotic pathways, PC is specifically necessary for maintaining oxidation, biosynthesis, and pathways distal to the TCA cycle, such as antioxidant defenses.


Asunto(s)
Antioxidantes/metabolismo , Ciclo del Ácido Cítrico/genética , Hígado/metabolismo , Redes y Vías Metabólicas/genética , Piruvato Carboxilasa/genética , Animales , Respiración de la Célula/genética , Gluconeogénesis/genética , Hepatitis/genética , Hepatitis/metabolismo , Hepatitis/patología , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Piruvato Carboxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...