Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 31(12): e4480, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36261883

RESUMEN

Temperature is a fundamental environmental factor that shapes the evolution of organisms. Learning thermal determinants of protein sequences in evolution thus has profound significance for basic biology, drug discovery, and protein engineering. Here, we use a data set of over 3 million BRENDA enzymes labeled with optimal growth temperatures (OGTs) of their source organisms to train a deep neural network model (DeepET). The protein-temperature representations learned by DeepET provide a temperature-related statistical summary of protein sequences and capture structural properties that affect thermal stability. For prediction of enzyme optimal catalytic temperatures and protein melting temperatures via a transfer learning approach, our DeepET model outperforms classical regression models trained on rationally designed features and other deep-learning-based representations. DeepET thus holds promise for understanding enzyme thermal adaptation and guiding the engineering of thermostable enzymes.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Estabilidad de Enzimas , Proteínas/química , Secuencia de Aminoácidos , Temperatura
2.
Nucleic Acids Res ; 49(21): e126, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614189

RESUMEN

Metagenomic analyses of microbial communities have revealed a large degree of interspecies and intraspecies genetic diversity through the reconstruction of metagenome assembled genomes (MAGs). Yet, metabolic modeling efforts mainly rely on reference genomes as the starting point for reconstruction and simulation of genome scale metabolic models (GEMs), neglecting the immense intra- and inter-species diversity present in microbial communities. Here, we present metaGEM (https://github.com/franciscozorrilla/metaGEM), an end-to-end pipeline enabling metabolic modeling of multi-species communities directly from metagenomes. The pipeline automates all steps from the extraction of context-specific prokaryotic GEMs from MAGs to community level flux balance analysis (FBA) simulations. To demonstrate the capabilities of metaGEM, we analyzed 483 samples spanning lab culture, human gut, plant-associated, soil, and ocean metagenomes, reconstructing over 14,000 GEMs. We show that GEMs reconstructed from metagenomes have fully represented metabolism comparable to isolated genomes. We demonstrate that metagenomic GEMs capture intraspecies metabolic diversity and identify potential differences in the progression of type 2 diabetes at the level of gut bacterial metabolic exchanges. Overall, metaGEM enables FBA-ready metabolic model reconstruction directly from metagenomes, provides a resource of metabolic models, and showcases community-level modeling of microbiomes associated with disease conditions allowing generation of mechanistic hypotheses.


Asunto(s)
Bases de Datos Genéticas , Microbioma Gastrointestinal/genética , Metagenoma , Plantas/genética , Humanos , Microbiología del Suelo
3.
Front Mol Biosci ; 8: 673363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179082

RESUMEN

Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology.

4.
Patterns (N Y) ; 1(9): 100137, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33336195

RESUMEN

High-throughput data-independent acquisition (DIA) is the method of choice for quantitative proteomics, combining the best practices of targeted and shotgun approaches. The resultant DIA spectra are, however, highly convolved and with no direct precursor-fragment correspondence, complicating biological sample analysis. Here, we present CANDIA (canonical decomposition of data-independent-acquired spectra), a GPU-powered unsupervised multiway factor analysis framework that deconvolves multispectral scans to individual analyte spectra, chromatographic profiles, and sample abundances, using parallel factor analysis. The deconvolved spectra can be annotated with traditional database search engines or used as high-quality input for de novo sequencing methods. We demonstrate that spectral libraries generated with CANDIA substantially reduce the false discovery rate underlying the validation of spectral quantification. CANDIA covers up to 33 times more total ion current than library-based approaches, which typically use less than 5% of total recorded ions, thus allowing quantification and identification of signals from unexplored DIA spectra.

5.
Nat Commun ; 11(1): 6141, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262328

RESUMEN

Understanding the genetic regulatory code governing gene expression is an important challenge in molecular biology. However, how individual coding and non-coding regions of the gene regulatory structure interact and contribute to mRNA expression levels remains unclear. Here we apply deep learning on over 20,000 mRNA datasets to examine the genetic regulatory code controlling mRNA abundance in 7 model organisms ranging from bacteria to Human. In all organisms, we can predict mRNA abundance directly from DNA sequence, with up to 82% of the variation of transcript levels encoded in the gene regulatory structure. By searching for DNA regulatory motifs across the gene regulatory structure, we discover that motif interactions could explain the whole dynamic range of mRNA levels. Co-evolution across coding and non-coding regions suggests that it is not single motifs or regions, but the entire gene regulatory structure and specific combination of regulatory elements that define gene expression levels.


Asunto(s)
Aprendizaje Profundo , Evolución Molecular , Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Bacterias/genética , Secuencia de Bases , Drosophila melanogaster/genética , Humanos , Ratones , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...