Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(3): e91820, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24632855

RESUMEN

R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.


Asunto(s)
Cromosomas de Insectos , Saltamontes/genética , Retroelementos , Secuencia de Aminoácidos , Animales , Dosificación de Gen , Masculino , Datos de Secuencia Molecular , Posición Específica de Matrices de Puntuación , Alineación de Secuencia , Transcripción Genética
2.
PLoS One ; 8(9): e66441, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24066021

RESUMEN

R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed.


Asunto(s)
ARN Catalítico/genética , Retroelementos/genética , Animales , Dominio Catalítico , Evolución Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 28S/genética
3.
Mol Cell Biol ; 28(20): 6452-61, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18678644

RESUMEN

R2 retrotransposable elements exclusively insert into a conserved region of the tandemly organized 28S rRNA genes. Despite inactivating a subset of these genes, R2 elements have persisted in the ribosomal DNA (rDNA) loci of insects for hundreds of millions of years. Controlling R2 proliferation was addressed in this study using lines of Drosophila simulans previously shown to have either active or inactive R2 retrotransposition. Lines with active retrotransposition were shown to have high R2 transcript levels, which nuclear run-on transcription experiments revealed were due to increased transcription of R2-inserted genes. Crosses between R2 active and inactive lines indicated that an important component of this transcriptional control is linked to or near the rDNA locus, with the R2 transcription level of the inactive parent being dominant. Pulsed-field gel analysis suggested that the R2 active and inactive states were determined by R2 distribution within the locus. Molecular and cytological analyses further suggested that the entire rDNA locus from the active line can be silenced in favor of the locus from the inactive line. This silencing of entire rDNA loci represents an example of the large-scale epigenetic control of transposable elements and shares features with the nucleolar dominance frequently seen in interspecies hybrids.


Asunto(s)
Nucléolo Celular/genética , Drosophila/citología , Drosophila/genética , Epigénesis Genética , Retroelementos/genética , Animales , Cruzamientos Genéticos , ADN Ribosómico/genética , Femenino , Regulación de la Expresión Génica , Masculino , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
4.
Genetics ; 165(2): 675-85, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14573479

RESUMEN

The non-LTR retrotransposons R1 and R2 insert into the 28S rRNA genes of arthropods. Comparisons among Drosophila lineages have shown that these elements are vertically inherited, while studies within species have indicated a rapid turnover of individual copies (elimination of old copies and the insertion of new copies). To better understand the turnover of R1 and R2, 200 retrotranspositions and nearly 100 eliminations have been scored in the Harwich mutation-accumulation lines of Drosophila melanogaster. Because the rDNA arrays in D. melanogaster are present on the X and Y chromosomes and no exchanges were detected in these lines, it was possible to show that R1 retrotranspositions occur predominantly in the male germ line, while R2 retrotranspositions were more evenly divided between the germ lines of both sexes. The rate of elimination of elements from the Y rDNA array was twice that of the X rDNA array with both chromosomal loci containing regions where the rate of elimination was on average eight times higher. Most R1 and R2 eliminations appear to occur by large intrachromosomal events (i.e., loop-out events) that involve multiple rDNA units. These findings are interpreted in light of the known abundance of R1 and R2 elements in the X and Y rDNA loci of D. melanogaster.


Asunto(s)
ADN Ribosómico , Retroelementos , Eliminación de Secuencia , Cromosoma X , Cromosoma Y , Animales , Drosophila melanogaster/genética , Recombinación Genética
5.
Mol Biol Evol ; 20(8): 1260-70, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12777502

RESUMEN

A small (100 bp) region of the 28S rRNA gene has been shown to serve as the target site for the insertion of non-long terminal repeat (non-LTR) retrotransposons in both arthropods and nematodes. Here we characterize a lineage of non-LTR retrotransposons that inserts into this target site in the phylum Platyhelminthes. Dugesiid planaria contain elements, named R5, that insert 8 bp upstream of the target site used by arthropod R2 elements. The complete sequence of this element from Girardia tigrina revealed that it encoded two open reading frames (ORFs). The second ORF contained reverse transcriptase and restriction enzyme-like endonuclease domains similar to those found in R2 and R4, the elements that insert into the 28S genes of nematodes. The closest relative of R5, however, was the element NeSL-1, which inserts into the spliced leader 1 exons of nematodes. The rRNA genes of dugesiid planaria are unusual in that they comprise two types of rDNA units that differ by 8%-10% in nucleotide sequence of the 18S and 28S coding regions. Type II units are transcribed in adult tissues at levels that are less than 1% that of the type I units. R5 elements were only found inserted in the type II units, where presumably they cause less harm to the host. A second unusual aspect of the dugesiid rRNA genes is that the target site for the R5 insertion is duplicated 300 bp upstream of the original insertion site. R5 elements were identified at both sites. These findings expand the distribution of non-LTR elements that are specialized for insertion into the 28S gene and suggest that still more elements exist in other eukaryotic taxa. Attempts to trace the phylogeny of R5 did not offer sufficient resolution to determine whether R2, R4, and R5 represent the same lineage or whether they represent independent specializations for the 28S gene.


Asunto(s)
Genes de ARNr , Filogenia , Planarias/genética , ARN Ribosómico 28S/clasificación , ARN Ribosómico 28S/genética , Retroelementos/genética , Animales , Secuencia de Bases , ADN de Helmintos/aislamiento & purificación , ADN de Helmintos/metabolismo , Genes de Helminto , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Planarias/clasificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
6.
Mol Biol Evol ; 19(5): 619-30, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11961096

RESUMEN

Mobile elements that use reverse transcriptase to make new copies of themselves are found in all major lineages of eukaryotes. The non-long terminal repeat (non-LTR) retrotransposons have been suggested to be the oldest of these eukaryotic elements. Phylogenetic analysis of non-LTR elements suggests that they have predominantly undergone vertical transmission, as opposed to the frequent horizontal transmissions found for other mobile elements. One prediction of this vertical model of inheritance is that the oldest lineages of eukaryotes should exclusively harbor the oldest lineages of non-LTR retrotransposons. Here we characterize the non-LTR retrotransposons present in one of the most primitive eukaryotes, the diplomonad Giardia lamblia. Two families of elements were detected in the WB isolate of G. lamblia currently being used for the genome sequencing project. These elements are clearly distinct from all other previously described non-LTR lineages. Phylogenetic analysis indicates that these Genie elements (for Giardia early non-LTR insertion element) are among the oldest known lineages of non-LTR elements consistent with strict vertical descent. Genie elements encode a single open reading frame with a carboxyl terminal endonuclease domain. Genie 1 is site specific, as seven to eight copies are present in a single tandem array of a 771-bp repeat near the telomere of one chromosome. The function of this repeat is not known. One additional, highly divergent, element within the Genie 1 lineage is not located in this tandem array but is near a second telomere. Four different telomere addition sites could be identified within or near the Genie elements on each of these chromosomes. The second lineage of non-LTR elements, Genie 2, is composed of about 10 degenerate copies. Genie 2 elements do not appear to be site specific in their insertion. An unusual aspect of Genie 2 is that all copies contain inverted repeats up to 172 bp in length.


Asunto(s)
Giardia lamblia/genética , Elementos de Nucleótido Esparcido Largo/genética , Animales , Secuencia de Bases , ADN Protozoario/genética , Evolución Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Homología de Secuencia de Ácido Nucleico , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA