Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 1264, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894534

RESUMEN

Thermal-stress events associated with climate change cause coral bleaching and mortality that threatens coral reefs globally. Yet coral bleaching patterns vary spatially and temporally. Here we synthesize field observations of coral bleaching at 3351 sites in 81 countries from 1998 to 2017 and use a suite of environmental covariates and temperature metrics to analyze bleaching patterns. Coral bleaching was most common in localities experiencing high intensity and high frequency thermal-stress anomalies. However, coral bleaching was significantly less common in localities with a high variance in sea-surface temperature (SST) anomalies. Geographically, the highest probability of coral bleaching occurred at tropical mid-latitude sites (15-20 degrees north and south of the Equator), despite similar thermal stress levels at equatorial sites. In the last decade, the onset of coral bleaching has occurred at significantly higher SSTs (∼0.5 °C) than in the previous decade, suggesting that thermally susceptible genotypes may have declined and/or adapted such that the remaining coral populations now have a higher thermal threshold for bleaching.


Asunto(s)
Adaptación Fisiológica , Antozoos/fisiología , Cambio Climático , Análisis de Varianza , Animales , Arrecifes de Coral , Calor , Océano Índico , Océano Pacífico
2.
Mar Biol ; 165(10): 156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294007

RESUMEN

Herbivory is a significant driver of algal community dynamics on coral reefs. However, abiotic factors such as the complexity and orientation of the benthos often mediate the impact of herbivores on benthic communities. We experimentally evaluated the independent and interactive effects of substrate orientation and herbivorous fishes on algal community dynamics on a coral reef in the Florida Keys, USA. We created horizontal and vertical substrates, mimicking the trend in the reduction of vertical surfaces of coral reefs, to assess how algal communities developed either with herbivory (open areas) or without herbivory (herbivore exclosures). We found that substrate orientation was the dominant influence on macroalgal community composition. Herbivores had little impact on community development of vertical substrates as crustose algae dominated these substrates regardless of being in exclosures or open areas. In contrast, herbivores strongly impacted communities on horizontal substrates, with upright macroalgae (e.g., Dictyota spp., articulated coralline algae) dominating herbivore exclosures, while filamentous turf algae and sediment dominated open areas. Outside of exclosures, differences between vertical and horizontal substrates exposed to herbivores persisted despite similar intensity of herbivory. Our results suggest that the orientation of the reef benthos has an important impact on benthic communities. On vertical surfaces, abiotic factors may be more important for structuring algal communities while herbivory may be more important for controlling algal dynamics in flatter areas. Thus, the decline in structural complexity of Caribbean coral reefs and the flattening of reef substrates may fundamentally alter the impact that herbivores have on benthic community dynamics.

3.
Cell Mol Life Sci ; 59(12): 2210-5, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12568347

RESUMEN

Polar plants and animals survive in subzero waters (-2 degrees C) and many of these marine organisms produce antifreeze proteins (AFPs) to better adapt themselves to these conditions. AFPs prevent the growth of ice crystals which disrupt cellular membranes and destroy cells by inhibiting crystallization of water within the organism. The hydrophilic extract of an Antarctic sponge Homaxinella balfourensis exhibited a non-colligative freezing point depression effect on the crystal morphology of water. The extract was purified by repeated reverse phase high-pressure liquid chromatography, then assayed and shown to contain several AFPs. The major peptide was isolated, analyzed using matrix-assisted laser desorption ionization mass spectrometry and the partial structure of the peptide identified through amino acid sequencing. AFPs have potential applications in agriculture, medicine and the food industry.


Asunto(s)
Proteínas Anticongelantes/aislamiento & purificación , Poríferos/química , Animales , Regiones Antárticas , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Frío , Cristalización , Poríferos/metabolismo , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA