Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 699: 343-371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942510

RESUMEN

Octocorals are the most prolific source of terpenoids in the marine environment, with more than 4000 different compounds known from the phylum to date. However, the biochemical and genetic origin of their production remained elusive until recent studies showed that octocorals encode genes responsible for the biosynthesis of terpenoids in their own chromosomal DNA rather than from microbial symbionts as originally proposed. The identified coral genes include those encoding a new group of class I terpene cyclases (TCs) clustered among other candidate classes of tailoring enzymes. Phylogenetic analyses established octocoral TCs as a monophyletic clade, distinct from TCs of plants, bacteria, and other organisms. The newly discovered group of TCs appears to be ubiquitous in octocorals and is evolutionarily ancient. Given the recent discovery of octocoral terpenoid biochemistry and only limited genomic data presently available, there is substantial potential for discovering new biosynthetic pathways from octocorals for terpene production. The following chapter outlines practical experimental procedures for octocoral DNA and RNA extraction, genome and transcriptome assembly and mining, TC cloning and gene expression, protein purification, and in vitro analyses.


Asunto(s)
Antozoos , Terpenos , Antozoos/enzimología , Antozoos/genética , Antozoos/metabolismo , Terpenos/metabolismo , Animales , Filogenia , Clonación Molecular/métodos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo
2.
ACS Chem Biol ; 19(1): 185-192, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38081799

RESUMEN

Red algae or seaweeds produce highly distinctive halogenated terpenoid compounds, including the pentabromochlorinated monoterpene halomon that was once heralded as a promising anticancer agent. The first dedicated step in the biosynthesis of these natural product molecules is expected to be catalyzed by terpene synthase (TS) enzymes. Recent work has demonstrated an emerging class of type I TSs in red algal terpene biosynthesis. However, only one such enzyme from a notoriously haloterpenoid-producing red alga (Laurencia pacifica) has been functionally characterized and the product structure is not related to halogenated terpenoids. Herein, we report 10 new type I TSs from the red algae Portieria hornemannii, Plocamium pacificum, L. pacifica, and Laurencia subopposita that produce a diversity of halogenated mono- and sesquiterpenes. We used a combination of genome sequencing, terpenoid metabolomics, in vitro biochemistry, and bioinformatics to establish red algal TSs in all four species, including those associated with the selective production of key halogenated terpene precursors myrcene, trans-ß-ocimene, and germacrene D-4-ol. These results expand on a small but growing number of characterized red algal TSs and offer insight into the biosynthesis of iconic halogenated algal compounds that are not without precedence elsewhere in biology.


Asunto(s)
Transferasas Alquil y Aril , Rhodophyta , Rhodophyta/química , Terpenos/química , Monoterpenos/química
3.
Commun Chem ; 6(1): 79, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095327

RESUMEN

Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.

4.
Proc Natl Acad Sci U S A ; 120(9): e2220934120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802428

RESUMEN

Sea sponges are the largest marine source of small-molecule natural products described to date. Sponge-derived molecules, such as the chemotherapeutic eribulin, the calcium-channel blocker manoalide, and antimalarial compound kalihinol A, are renowned for their impressive medicinal, chemical, and biological properties. Sponges contain microbiomes that control the production of many natural products isolated from these marine invertebrates. In fact, all genomic studies to date investigating the metabolic origins of sponge-derived small molecules concluded that microbes-not the sponge animal host-are the biosynthetic producers. However, early cell-sorting studies suggested the sponge animal host may play a role particularly in the production of terpenoid molecules. To investigate the genetic underpinnings of sponge terpenoid biosynthesis, we sequenced the metagenome and transcriptome of an isonitrile sesquiterpenoid-containing sponge of the order Bubarida. Using bioinformatic searches and biochemical validation, we identified a group of type I terpene synthases (TSs) from this sponge and multiple other species, the first of this enzyme class characterized from the sponge holobiome. The Bubarida TS-associated contigs consist of intron-containing genes homologous to sponge genes and feature GC percentage and coverage consistent with other eukaryotic sequences. We identified and characterized TS homologs from five different sponge species isolated from geographically distant locations, thereby suggesting a broad distribution amongst sponges. This work sheds light on the role of sponges in secondary metabolite production and speaks to the possibility that other sponge-specific molecules originate from the animal host.


Asunto(s)
Productos Biológicos , Microbiota , Poríferos , Animales , Poríferos/genética , Organismos Acuáticos/genética , Microbiota/genética , Metagenoma , Filogenia
5.
J Nat Prod ; 85(9): 2159-2167, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36040034

RESUMEN

Cultures of a termite-associated and a free-living member of the fungal genus Podaxis, revived from spores maintained in century-old herbarium collections, were analyzed for their insecticidal and antimicrobial effects. Their secondary metabolomes were explored to uncover possible adaptive mechanisms of termite association, and dereplication of LC-HRMS/MS data sets led to the isolation of podaxisterols A-D (1-4), modified ergosterol derivatives that result from a Diels-Alder reaction with endogenous nitrosyl cyanide. Chemical structures were determined based on HRMS/MS and NMR analyses as well as X-ray crystallography. The putative origin of the endogenous fungal nitrosyl cyanide and ergosterol derivatives is discussed based on results obtained from stable isotope experiments and in silico analysis. Our "omics"-driven analysis of this underexplored yet worldwide distributed fungal genus builds a foundation for studies on a potential metabolic adaptations to diverse lifestyles.


Asunto(s)
Agaricales , Antiinfecciosos , Ergosterol , Insecticidas , Isópteros , Agaricales/química , Agaricales/metabolismo , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Ergosterol/análogos & derivados , Ergosterol/aislamiento & purificación , Ergosterol/farmacología , Insecticidas/química , Insecticidas/aislamiento & purificación , Insecticidas/farmacología , Isópteros/microbiología , Metabolómica , Óxidos de Nitrógeno/química
6.
Nat Chem Biol ; 18(6): 664-669, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35606558

RESUMEN

Octocorals are major contributors of terpenoid chemical diversity in the ocean. Natural products from other sessile marine animals are primarily biosynthesized by symbiotic microbes rather than by the host. Here, we challenge this long-standing paradigm by describing a monophyletic lineage of animal-encoded terpene cyclases (TCs) ubiquitous in octocorals. We characterized 15 TC enzymes from nine genera, several of which produce precursors of iconic coral-specific terpenoids, such as pseudopterosin, lophotoxin and eleutherobin. X-ray crystallography revealed that coral TCs share conserved active site residues and structural features with bacterial TCs. The identification of coral TCs enabled the targeted identification of the enzyme that constructs the coral-exclusive capnellane scaffold. Several TC genes are colocalized with genes that encode enzymes known to modify terpenes. This work presents an example of biosynthetic capacity in the kingdom Animalia that rivals the chemical complexity generated by plants, unlocking the biotechnological potential of octocorals for biomedical applications.


Asunto(s)
Antozoos , Animales , Bacterias/genética , Terpenos/química
7.
mBio ; 12(3): e0355120, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34126770

RESUMEN

Macrotermitine termites have domesticated fungi in the genus Termitomyces as their primary food source using predigested plant biomass. To access the full nutritional value of lignin-enriched plant biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic polymer. While most previous work suggests that lignocellulose degradation is accomplished predominantly by the fungal cultivar, our current understanding of the underlying biomolecular mechanisms remains rudimentary. Here, we provide conclusive omics and activity-based evidence that Termitomyces employs not only a broad array of carbohydrate-active enzymes (CAZymes) but also a restricted set of oxidizing enzymes (manganese peroxidase, dye decolorization peroxidase, an unspecific peroxygenase, laccases, and aryl-alcohol oxidases) and Fenton chemistry for biomass degradation. We propose for the first time that Termitomyces induces hydroquinone-mediated Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + •OH + H2O) using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MH2Q, compound 19)-based electron shuttle system to complement the enzymatic degradation pathways. This study provides a comprehensive depiction of how efficient biomass degradation by means of this ancient insect's agricultural symbiosis is accomplished. IMPORTANCE Fungus-growing termites have optimized the decomposition of recalcitrant plant biomass to access valuable nutrients by engaging in a tripartite symbiosis with complementary contributions from a fungal mutualist and a codiversified gut microbiome. This complex symbiotic interplay makes them one of the most successful and important decomposers for carbon cycling in Old World ecosystems. To date, most research has focused on the enzymatic contributions of microbial partners to carbohydrate decomposition. Here, we provide genomic, transcriptomic, and enzymatic evidence that Termitomyces also employs redox mechanisms, including diverse ligninolytic enzymes and a Fenton chemistry-based hydroquinone-catalyzed lignin degradation mechanism, to break down lignin-rich plant material. Insights into these efficient decomposition mechanisms reveal new sources of efficient ligninolytic agents applicable for energy generation from renewable sources.


Asunto(s)
Biomasa , Isópteros/microbiología , Lignina/metabolismo , Estrés Oxidativo , Termitomyces/enzimología , Termitomyces/metabolismo , Animales , Ecosistema , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Genoma Fúngico , Oxidación-Reducción , Plantas/metabolismo , Plantas/microbiología , Simbiosis , Termitomyces/clasificación , Termitomyces/genética
8.
ACS Chem Biol ; 14(12): 2922-2931, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756078

RESUMEN

Dimethylallyltryptophan synthases catalyze the regiospecific transfer of (oligo)prenylpyrophosphates to aromatic substrates like tryptophan derivatives. These reactions are key steps in many biosynthetic pathways of fungal and bacterial secondary metabolites. In vitro investigations on recombinant DMATS1Ff from Fusarium fujikuroi identified the enzyme as the first selective reverse tryptophan-N-1 prenyltransferase of fungal origin. The enzyme was also able to catalyze the reverse N-geranylation of tryptophan. DMATS1Ff was shown to be phylogenetically related to fungal tyrosine O-prenyltransferases and fungal 7-DMATS. Like these enzymes, DMATS1Ff was able to convert tyrosine into its regularly O-prenylated derivative. Investigation of the binding sites of DMATS1Ff by homology modeling and comparison to the crystal structure of 4-DMATS FgaPT2 showed an almost identical site for DMAPP binding but different residues for tryptophan coordination. Several putative active site residues were verified by site directed mutagenesis of DMATS1Ff. Homology models of the phylogenetically related enzymes showed similar tryptophan binding residues, pointing to a unified substrate binding orientation of tryptophan and DMAPP, which is distinct from that in FgaPT2. Isotopic labeling experiments showed the reaction catalyzed by DMATS1Ff to be nonstereospecific. Based on these data, a detailed mechanism for DMATS1Ff catalysis is proposed.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Fusarium/enzimología , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Sitios de Unión , Dominio Catalítico , Mutagénesis Sitio-Dirigida , Conformación Proteica
9.
Org Biomol Chem ; 17(13): 3348-3355, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30693926

RESUMEN

Three terpene synthases from the termite associated fungus Termitomyces were functionally characterized as (+)-intermedeol synthase, (-)-γ-cadinene synthase and (+)-germacrene D-4-ol synthase, with the germacrene D-4-ol synthase as the first reported enzyme that produces the (+)-enantiomer. The enzymatic mechanisms were thoroughly investigated by incubation with isotopically labeled precursors to follow the stereochemical courses of single reaction steps in catalysis. The role of putative active site residues was tested by site directed mutagenesis of a highly conserved tryptophan in all three enzymes and additional residues in (-)-γ-cadinene synthase that were identified by homology model analysis.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Termitomyces/enzimología , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Estructura Molecular , Estereoisomerismo
10.
Chem Commun (Camb) ; 54(28): 3540-3542, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29565430

RESUMEN

Isochamigrene, a side product of the trichodiene synthase, which is a key enzyme from the biosynthesis of the trichothecene mycotoxins from Fusarium spp., was enantioselectively synthesised and compared to the natural product from Fusarium sporotrichioides. As a result, its absolute configuration was assigned to (S)-isochamigrene. Implications for the recently extensively discussed cyclisation mechanism towards trichodiene and its side products are discussed.


Asunto(s)
Liasas de Carbono-Carbono/metabolismo , Fusarium/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Ciclización , Estructura Molecular , Estereoisomerismo
11.
Front Microbiol ; 8: 1175, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28694801

RESUMEN

GATA-type transcription factors (TFs) such as the nitrogen regulators AreA and AreB, or the light-responsive TFs WC-1 and WC-2, play global roles in fungal growth and development. The conserved GATA TF NsdD is known as an activator of sexual development and key repressor of conidiation in Aspergillus nidulans, and as light-regulated repressor of macroconidia formation in Botrytis cinerea. In the present study, we functionally characterized the NsdD ortholog in Fusarium fujikuroi, named Csm1. Deletion of this gene resulted in elevated microconidia formation in the wild-type (WT) and restoration of conidiation in the non-sporulating velvet mutant Δvel1 demonstrating that Csm1 also plays a role as repressor of conidiation in F. fujikuroi. Furthermore, biosynthesis of the PKS-derived red pigments, bikaverin and fusarubins, is de-regulated under otherwise repressing conditions. Cross-species complementation of the Δcsm1 mutant with the B. cinerea ortholog LTF1 led to full restoration of WT-like growth, conidiation and pigment formation. In contrast, the F. fujikuroi CSM1 rescued only the defects in growth, the tolerance to H2O2 and virulence, but did not restore the light-dependent differentiation when expressed in the B. cinerea Δltf1 mutant. Microarray analysis comparing the expression profiles of the F. fujikuroi WT and the Δcsm1 mutant under different nitrogen conditions revealed a strong impact of this GATA TF on 19 of the 47 gene clusters in the genome of F. fujikuroi. One of the up-regulated silent gene clusters is the one containing the sesquiterpene cyclase-encoding key gene STC1. Heterologous expression of STC1 in Escherichia coli enabled us to identify the product as the volatile bioactive compound (-)-germacrene D.

12.
Org Biomol Chem ; 15(20): 4432-4439, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28485454

RESUMEN

Dimethylsulfoniopropionate (DMSP) catabolism of marine bacteria plays an important role in marine and global ecology. The genome of Ruegeria pomeroyi DSS-3, a model organism from the Roseobacter group, harbours no less than three genes for different DMSP lyases (DddW, DddP and DddQ) that catalyse the degradation of DMSP to dimethyl sulfide (DMS) and acrylate. Despite their apparent similar function these enzymes show no significant overall sequence identity. In this work DddQ and DddW from R. pomeroyi and the DddP homolog from Phaeobacter inhibens DSM 17395 were functionally characterised and their substrate scope was tested using several synthetic DMSP analogues. Comparative kinetic assays revealed differences in the conversion of DMSP and its analogues in terms of selectivity and overall velocity, giving additional insights into the molecular mechanisms of DMSP lyases and into their putatively different biological functions.


Asunto(s)
Liasas de Carbono-Azufre/química , Roseobacter/enzimología , Acrilatos/química , Acrilatos/metabolismo , Liasas de Carbono-Azufre/metabolismo , Estructura Molecular , Sulfuros/química , Sulfuros/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/metabolismo
13.
J Biol Chem ; 291(53): 27403-27420, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27856636

RESUMEN

The 2H-pyran-2-one gibepyrone A and its oxidized derivatives gibepyrones B-F have been isolated from the rice pathogenic fungus Fusarium fujikuroi already more than 20 years ago. However, these products have not been linked to the respective biosynthetic genes, and therefore, their biosynthesis has not yet been analyzed on a molecular level. Feeding experiments with isotopically labeled precursors clearly supported a polyketide origin for the formal monoterpenoid gibepyrone A, whereas the terpenoid pathway could be excluded. Targeted gene deletion verified that the F. fujikuroi polyketide synthase PKS13, designated Gpy1, is responsible for gibepyrone A biosynthesis. Next to Gpy1, the ATP-binding cassette transporter Gpy2 is encoded by the gibepyrone gene cluster. Gpy2 was shown to have only a minor impact on the actual efflux of gibepyrone A out of the cell. Instead, we obtained evidence that Gpy2 is involved in gene regulation as it represses GPY1 gene expression. Thus, GPY1 was up-regulated and gibepyrone A production was enhanced both extra- and intracellularly in Δgpy2 mutants. Furthermore, expression of GPY genes is strictly repressed by members of the fungus-specific velvet complex, Vel1, Vel2, and Lae1, whereas Sge1, a major regulator of secondary metabolism in F. fujikuroi, affects gibepyrone biosynthesis in a positive manner. The gibepyrone A derivatives gibepyrones B and D were shown to be produced by cluster-independent P450 monooxygenases, probably to protect the fungus from the toxic product. In contrast, the formation of gibepyrones E and F from gibepyrone A is a spontaneous process and independent of enzymatic activity.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Oryza/genética , Enfermedades de las Plantas/genética , Sintasas Poliquetidas/metabolismo , Pironas/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología
14.
Angew Chem Int Ed Engl ; 55(30): 8748-51, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27294564

RESUMEN

Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers.


Asunto(s)
Liasas de Carbono-Carbono/metabolismo , Fusarium/enzimología , Liasas de Carbono-Carbono/genética , Ciclización , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Mutagénesis Sitio-Dirigida , Fosfatos de Poliisoprenilo/química , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Sesquiterpenos de Guayano/biosíntesis , Sesquiterpenos de Guayano/química
15.
Environ Microbiol ; 18(11): 4037-4054, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27348741

RESUMEN

Filamentous fungi produce a vast array of secondary metabolites (SMs) and some play a role in agriculture or pharmacology. Sequencing of the rice pathogen Fusarium fujikuroi revealed the presence of far more SM-encoding genes than known products. SM production is energy-consuming and thus tightly regulated, leaving the majority of SM gene clusters silent under laboratory conditions. One important regulatory layer in SM biosynthesis involves histone modifications that render the underlying genes either silent or poised for transcription. Here, we show that the majority of the putative SM gene clusters in F. fujikuroi are located within facultative heterochromatin marked by trimethylated lysine 27 on histone 3 (H3K27me3). Kmt6, the methyltransferase responsible for establishing this histone mark, appears to be essential in this fungus, and knock-down of Kmt6 in the KMT6kd strain shows a drastic phenotype affecting fungal growth and development. Transcription of four so far cryptic and otherwise silent putative SM gene clusters was induced in the KMT6kd strain, in which decreased expression of KMT6 is accompanied by reduced H3K27me3 levels at the respective gene loci and accumulation of novel metabolites. One of the four putative SM gene clusters, named STC5, was analysed in more detail thereby revealing a novel sesquiterpene.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Histonas/metabolismo , Metiltransferasas/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Secuencias de Aminoácidos , Proteínas Fúngicas/metabolismo , Fusarium/química , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histonas/química , Histonas/genética , Metiltransferasas/metabolismo , Familia de Multigenes , Enfermedades de las Plantas/inmunología , Metabolismo Secundario
16.
Genome Biol Evol ; 8(11): 3574-3599, 2016 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-28040774

RESUMEN

Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchid endophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style.


Asunto(s)
Fusarium/genética , Genoma Fúngico , Especificidad del Huésped/genética , Polimorfismo Genético , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/aislamiento & purificación , Fusarium/patogenicidad , Mangifera/microbiología , Metaboloma , Orchidaceae/microbiología , Zea mays/microbiología
17.
Environ Microbiol ; 18(3): 936-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26662839

RESUMEN

Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety.


Asunto(s)
Transporte Biológico/genética , Vías Biosintéticas/genética , Ácido Fusárico/biosíntesis , Fusarium/enzimología , Fusarium/genética , Ácido Fusárico/análogos & derivados , Ácido Fusárico/genética , Fusarium/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes/genética , Oryza/genética , Sintasas Poliquetidas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA