Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Syst Biol ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733563

RESUMEN

Accurately reconstructing the reticulate histories of polyploids remains a central challenge for understanding plant evolution. Although phylogenetic networks can provide insights into relationships among polyploid lineages, inferring networks may be hindered by the complexities of homology determination in polyploid taxa. We use simulations to show that phasing alleles from allopolyploid individuals can improve phylogenetic network inference under the multispecies coalescent by obtaining the true network with fewer loci compared to haplotype consensus sequences or sequences with heterozygous bases represented as ambiguity codes. Phased allelic data can also improve divergence time estimates for networks, which is helpful for evaluating allopolyploid speciation hypotheses and proposing mechanisms of speciation. To achieve these outcomes in empirical data, we present a novel pipeline that leverages a recently developed phasing algorithm to reliably phase alleles from polyploids. This pipeline is especially appropriate for target enrichment data, where depth of coverage is typically high enough to phase entire loci. We provide an empirical example in the North American Dryopteris fern complex that demonstrates insights from phased data as well as the challenges of network inference. We establish that our pipeline (PATÉ: Phased Alleles from Target Enrichment data) is capable of recovering a high proportion of phased loci from both diploids and polyploids. These data may improve network estimates compared to using haplotype consensus assemblies by accurately inferring the direction of gene flow, but statistical non-identifiability of phylogenetic networks poses a barrier to inferring the evolutionary history of reticulate complexes.

2.
Syst Biol ; 72(2): 294-306, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-36579665

RESUMEN

A long-standing hypothesis in evolutionary biology is that the evolution of resource specialization can lead to an evolutionary dead end, where specialists have low diversification rates and limited ability to evolve into generalists. In recent years, advances in comparative methods investigating trait-based differences associated with diversification have enabled more robust tests of this idea and have found mixed support. We test the evolutionary dead end hypothesis by estimating net diversification rate differences associated with nest-type specialization among 3224 species of passerine birds. In particular, we test whether the adoption of hole-nesting, a nest-type specialization that decreases predation, results in reduced diversification rates relative to nesting outside of holes. Further, we examine whether evolutionary transitions to the specialist hole-nesting state have been more frequent than transitions out of hole-nesting. Using diversification models that accounted for background rate heterogeneity and different extinction rate scenarios, we found that hole-nesting specialization was not associated with diversification rate differences. Furthermore, contrary to the assumption that specialists rarely evolve into generalists, we found that transitions out of hole-nesting occur more frequently than transitions into hole-nesting. These results suggest that interspecific competition may limit adoption of hole-nesting, but that such competition does not result in limited diversification of hole-nesters. In conjunction with other recent studies using robust comparative methods, our results add to growing evidence that evolutionary dead ends are not a typical outcome of resource specialization. [Cavity nesting; diversification; hidden-state models; passerines; resource specialization.].


Asunto(s)
Evolución Biológica , Passeriformes , Animales , Filogenia , Fenotipo
3.
Front Plant Sci ; 13: 882960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646035

RESUMEN

Phylogenomic data increase the possibilities of resolving the evolutionary and systematic relationships among taxa. This is especially valuable in groups with few and homoplasious morphological characters, in which systematic and taxonomical delimitations have been traditionally difficult. Such is the case of several lineages within Bryophyta, like Orthotrichaceae, the second most diverse family of mosses. Members of tribe Orthotricheae are common in temperate and cold regions, as well as in high tropical mountains. In extratropical areas, they represent one of the main components of epiphytic communities, both in dry and oceanic or hyperoceanic conditions. The epiphytic environment is considered a hostile one for plant development, mainly due to its low capacity of moisture retention. Thus, the diversification of the Orthotrichaceae in this environment could be seen as striking. Over the last two decades, great taxonomic and systematic progresses have led to a rearrangement at the generic level in this tribe, providing a new framework to link environment to patterns of diversification. Here, we use nuclear loci targeted with the GoFlag 408 enrichment probe set to generate a well-sampled phylogeny with well-supported suprageneric taxa and increasing the phylogenetic resolution within the two recognized subtribes. Specifically, we show that several genera with Ulota-like morphology jointly constitute an independent lineage. Within this lineage, the recently described Atlantichella from Macaronesia and Western Europe appears as the sister group of Ulota bellii from Zealandia. This latter species is here segregated in the new genus Rehubryum. Assessment of the ecological and biogeographical affinities of the species within the phylogenetic framework suggests that niche adaptation (including climate and substrate) may be a key evolutionary driver that shaped the high diversification of Orthotricheae.

4.
PhytoKeys ; 205: 335-361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762011

RESUMEN

The Indo-Pacific legume genus Serianthes was recently placed in the Archidendron clade (sensu Koenen et al. 2020), a subclade of the mimosoid clade in subfamily Caesalpinioideae, which also includes Acacia, Archidendron, Archidendropsis, Falcataria, Pararchidendron, Paraserianthes and Wallaceodendron. Serianthes comprises ca. 18 species, five subspecies and two varieties that are characterised by bipinnately compound leaves with alternate sessile leaflets, branched axillary corymbiform panicles and woody indehiscent pods. Generic relationships, as well as species relationships within genera in the Archidendron clade, remain uncertain. While the sister relationship between Serianthes and the genus Falcataria is strongly supported by molecular data, the distinction between Serianthes and the monotypic genus Wallaceodendron has been questioned, based on their similar flower and fruit morphologies. We combined three gene-enriched hybrid capture DNA sequence datasets (generated from the 964 mimobaits v1 probe set, the expanded 997 mimobaits v2 probe set and the GoFlag angiosperm 408 probe set) and used their overlapping markers (77 loci of the target exonic and flanking regions) to test the monophyly of Serianthes and to investigate generic relationships within the Archidendron clade using 55 ingoid plus two outgroup taxa. We show that Serianthes is monophyletic, confirm the Serianthes + Falcataria sister relationship to Wallaceodendron and recognise this combined clade as the Serianthes clade within the Archidendron clade. We also evaluated the use of overlapping loci across datasets in combination with concordance analyses to test generic relationships and further investigate previously unresolved relationships across the wider ingoid clade. Concordance analysis revealed limited gene tree conflicts near the tips of the Archidendron clade, but increased discordance at the base of the clade, which could be attributed to rapid lineage divergence (radiation) and/or incomplete lineage sorting.

5.
Am J Bot ; 108(11): 2143-2149, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34787901

RESUMEN

PREMISE: To support large leaves, many woody plant species evolved a cost-effective way to thicken twigs. As an extension of E. J. H. Corner's rule that twig diameter increases with leaf size, we hypothesized that pith width also increases with leaf size. The benefit to the plant from the proposed relationship is that pith is a low-cost tissue that reduces the metabolic cost of large diameter twig production. METHODS: Leaf sizes and cross-sectional areas of bark, xylem, and pith of 81 species of trees and shrubs growing in Gainesville, Florida were measured and compared with standardized major axis regressions of pairwise species trait values and phylogenetically independent contrasts. RESULTS: Pith area increases with leaf size with or without accounting for phylogenetic relationships. In agreement with Corner's rule, overall twig diameter as well as bark and wood thickness also increase with leaf size. Thicker twigs showed more variation in relative pith, wood, and bark cross-sectional areas compared to thinner twigs. CONCLUSIONS: Investments in pith, a tissue of low density found in the centers of twigs, provides a low-cost way to increase twig circumference and thereby space for attachment of large leaves while increasing the overall second moment of area of twigs, which increases their ability to biomechanically support large leaves.


Asunto(s)
Ambiente , Hojas de la Planta , Filogenia , Plantas , Madera
6.
Sci Adv ; 7(27)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34193417

RESUMEN

Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.


Asunto(s)
Elementos Transponibles de ADN , Cromosomas Sexuales , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Femenino , Masculino , Mamíferos/genética , Cromosomas Sexuales/genética , Desarrollo Sexual
7.
Appl Plant Sci ; 9(1): e11406, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33552748

RESUMEN

PREMISE: New sequencing technologies facilitate the generation of large-scale molecular data sets for constructing the plant tree of life. We describe a new probe set for target enrichment sequencing to generate nuclear sequence data to build phylogenetic trees with any flagellate land plants, including hornworts, liverworts, mosses, lycophytes, ferns, and all gymnosperms. METHODS: We leveraged existing transcriptome and genome sequence data to design the GoFlag 451 probes, a set of 56,989 probes for target enrichment sequencing of 451 exons that are found in 248 single-copy or low-copy nuclear genes across flagellate plant lineages. RESULTS: Our results indicate that target enrichment using the GoFlag451 probe set can provide large nuclear data sets that can be used to resolve relationships among both distantly and closely related taxa across the flagellate land plants. We also describe the GoFlag 408 probes, an optimized probe set covering 408 of the 451 exons from the GoFlag 451 probe set that is commercialized by RAPiD Genomics. CONCLUSIONS: A target enrichment approach using the new probe set provides a relatively low-cost solution to obtain large-scale nuclear sequence data for inferring phylogenetic relationships across flagellate land plants.

8.
Am Nat ; 196(1): 9-28, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32552108

RESUMEN

Hybrid zones occur as range boundaries for many animal taxa. One model for how hybrid zones form and stabilize is the tension zone model, a version of which predicts that hybrid zone widths are determined by a balance between random dispersal into hybrid zones and selection against hybrids. Here, we examine whether random dispersal and proxies for selection against hybrids (genetic distances between hybridizing pairs) can explain variation in hybrid zone widths across 131 hybridizing pairs of animals. We show that these factors alone can explain ∼40% of the variation in zone width among animal hybrid zones, with dispersal explaining far more of the variation than genetic distances. Patterns within clades were idiosyncratic. Genetic distances predicted hybrid zone widths particularly well for reptiles, while this relationship was opposite tension zone predictions in birds. Last, the data suggest that dispersal and molecular divergence set lower bounds on hybrid zone widths in animals, indicating that there are geographic restrictions on hybrid zone formation. Overall, our analyses reinforce the fundamental importance of dispersal in hybrid zone formation and more generally in the ecology of range boundaries.


Asunto(s)
Distribución Animal , Mariposas Diurnas/fisiología , Hibridación Genética , Aislamiento Reproductivo , Selección Genética , Vertebrados/fisiología , Animales , Mariposas Diurnas/genética , Vertebrados/genética
9.
Curr Biol ; 30(11): 2026-2036.e3, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32330422

RESUMEN

Relative brain sizes in birds can rival those of primates, but large-scale patterns and drivers of avian brain evolution remain elusive. Here, we explore the evolution of the fundamental brain-body scaling relationship across the origin and evolution of birds. Using a comprehensive dataset sampling> 2,000 modern birds, fossil birds, and theropod dinosaurs, we infer patterns of brain-body co-variation in deep time. Our study confirms that no significant increase in relative brain size accompanied the trend toward miniaturization or evolution of flight during the theropod-bird transition. Critically, however, theropods and basal birds show weaker integration between brain size and body size, allowing for rapid changes in the brain-body relationship that set the stage for dramatic shifts in early crown birds. We infer that major shifts occurred rapidly in the aftermath of the Cretaceous-Paleogene mass extinction within Neoaves, in which multiple clades achieved higher relative brain sizes because of a reduction in body size. Parrots and corvids achieved the largest brains observed in birds via markedly different patterns. Parrots primarily reduced their body size, whereas corvids increased body and brain size simultaneously (with rates of brain size evolution outpacing rates of body size evolution). Collectively, these patterns suggest that an early adaptive radiation in brain size laid the foundation for subsequent selection and stabilization.


Asunto(s)
Evolución Biológica , Aves/anatomía & histología , Aves/genética , Encéfalo/anatomía & histología , Animales , Tamaño de los Órganos
10.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32041869

RESUMEN

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Asunto(s)
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolución Biológica , Membrana Celular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Phycodnaviridae , Plantas Modificadas Genéticamente , Potasio/metabolismo , Agua/metabolismo , Xilema/citología , Xilema/metabolismo
11.
New Phytol ; 224(3): 1252-1265, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31617595

RESUMEN

If particular traits consistently affect rates of speciation and extinction, broad macroevolutionary patterns can be interpreted as consequences of selection at high levels of the biological hierarchy. Identifying traits associated with diversification rates is difficult because of the wide variety of characters under consideration and the statistical challenges of testing for associations from comparative phylogenetic data. Ploidy (diploid vs polyploid states) and breeding system (self-incompatible vs self-compatible states) are both thought to be drivers of differential diversification in angiosperms. We fit 29 diversification models to extensive trait and phylogenetic data in Solanaceae and investigate how speciation and extinction rate differences are associated with ploidy, breeding system, and the interaction between these traits. We show that diversification patterns in Solanaceae are better explained by breeding system and an additional unobserved factor, rather than by ploidy. We also find that the most common evolutionary pathway to polyploidy in Solanaceae occurs via direct breakdown of self-incompatibility by whole genome duplication, rather than indirectly via breakdown followed by polyploidization. Comparing multiple stochastic diversification models that include complex trait interactions alongside hidden states enhances our understanding of the macroevolutionary patterns in plant phylogenies.


Asunto(s)
Biodiversidad , Filogenia , Fitomejoramiento , Ploidias , Teorema de Bayes , Modelos Biológicos , Poliploidía , Carácter Cuantitativo Heredable
12.
Genome Biol Evol ; 10(11): 2882-2898, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239709

RESUMEN

Genomic data have provided evidence of previously unknown ancient whole genome duplications (WGDs) and highlighted the role of WGDs in the evolution of many eukaryotic lineages. Ancient WGDs often are detected by examining distributions of synonymous substitutions per site (Ks) within a genome, or "Ks plots." For example, WGDs can be detected from Ks plots by using univariate mixture models to identify peaks in Ks distributions. We performed gene family simulation experiments to evaluate the effects of different Ks estimation methods and mixture models on our ability to detect ancient WGDs from Ks plots. The simulation experiments, which accounted for variation in substitution rates and gene duplication and loss rates across gene families, tested the effects of WGD age and gene retention rates following WGD on inferring WGDs from Ks plots. Our simulations reveal limitations of Ks plot analyses. Strict interpretations of mixture model analyses often overestimate the number of WGD events, and Ks plot analyses typically fail to detect WGDs when ≤10% of the duplicated genes are retained following the WGD. However, WGDs can accurately be characterized over an intermediate range of Ks. The simulation results are supported by empirical analyses of transcriptomic data, which also suggest that biases in gene retention likely affect our ability to detect ancient WGDs. Although our results indicate mixture model results should be interpreted with great caution, using node-averaged Ks estimates and applying more appropriate mixture models can improve the accuracy of detecting WGDs.


Asunto(s)
Modelos Genéticos , Poliploidía , Actinidia , Artemisia , Duplicación de Gen , Familia de Multigenes , Mutación Silenciosa , Transcriptoma
13.
Nat Ecol Evol ; 2(7): 1120-1127, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915344

RESUMEN

Organismal traits may evolve either gradually or in rapid pulses, but the relative importance of these modes in the generation of species differences is unclear. Additionally, while pulsed evolution is frequently assumed to be associated with speciation events, few studies have explicitly examined how the tempo of trait divergence varies with respect to different geographical phases of speciation, starting with geographic isolation and ending, in many cases, with spatial overlap (sympatry). Here we address these issues by combining divergence time estimates, trait measurements and geographic range data for 952 avian sister species pairs worldwide to examine the tempo and timing of trait divergence in recent speciation events. We show that patterns of divergence in key ecological traits are not gradual, but instead seem to follow a pattern of relative stasis interspersed with evolutionary pulses of varying magnitude. We also find evidence that evolutionary pulses generally precede sympatry, and that greater trait disparity is associated with sympatry. These findings suggest that early pulses of trait divergence promote subsequent transitions to sympatry, rather than occurring after sympatry has been established. Incorporating models with evolutionary pulses of varying magnitude into speciation theory may explain why some species pairs achieve rapid sympatry whereas others undergo prolonged geographical exclusion.


Asunto(s)
Aves/fisiología , Especiación Genética , Rasgos de la Historia de Vida , Animales , Simpatría
14.
Am J Bot ; 105(3): 549-564, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29730880

RESUMEN

PREMISE OF THE STUDY: Many ecological and evolutionary processes shape the assembly of organisms into local communities from a regional pool of species. We analyzed phylogenetic and functional diversity to understand community assembly of the ferns of Florida at two spatial scales. METHODS: We built a phylogeny for 125 of the 141 species of ferns in Florida using five chloroplast markers. We calculated mean pairwise dissimilarity (MPD) and mean nearest taxon distance (MNTD) from phylogenetic distances and functional trait data for both spatial scales and compared the results to null models to assess significance. KEY RESULTS: Our results for over vs. underdispersion in functional and phylogenetic diversity differed depending on spatial scale and metric considered. At the county scale, MPD revealed evidence for phylogenetic overdispersion, while MNTD revealed phylogenetic and functional underdispersion, and at the conservation area scale, MPD revealed phylogenetic and functional underdispersion while MNTD revealed evidence only of functional underdispersion. CONCLUSIONS: Our results are consistent with environmental filtering playing a larger role at the smaller, conservation area scale. The smaller spatial units are likely composed of fewer local habitat types that are selecting for closely related species, with the larger-scale units more likely to be composed of multiple habitat types that bring together a larger pool of species from across the phylogeny. Several aspects of fern biology, including their unique physiology and water relations and the importance of the independent gametophyte stage of the life cycle, make ferns highly sensitive to local, microhabitat conditions.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecología , Ecosistema , Helechos/genética , Filogenia , Adaptación Biológica , Cloroplastos , Florida , Células Germinativas de las Plantas , Modelos Biológicos , Fenotipo , Fenómenos Fisiológicos de las Plantas , Análisis Espacial , Especificidad de la Especie , Agua
15.
Appl Plant Sci ; 6(3): e1035, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29732265

RESUMEN

PREMISE OF THE STUDY: Phenotypic data sets are necessary to elucidate the genealogy of life, but assembling phenotypic data for taxa across the tree of life can be technically challenging and prohibitively time consuming. We describe a semi-automated protocol to facilitate and expedite the assembly of phenotypic character matrices of plants from formal taxonomic descriptions. This pipeline uses new natural language processing (NLP) techniques and a glossary of over 9000 botanical terms. METHODS AND RESULTS: Our protocol includes the Explorer of Taxon Concepts (ETC), an online application that assembles taxon-by-character matrices from taxonomic descriptions, and MatrixConverter, a Java application that enables users to evaluate and discretize the characters extracted by ETC. We demonstrate this protocol using descriptions from Araucariaceae. CONCLUSIONS: The NLP pipeline unlocks the phenotypic data found in taxonomic descriptions and makes them usable for evolutionary analyses.

16.
Appl Plant Sci ; 6(3): e1037, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29732267

RESUMEN

PREMISE OF THE STUDY: Polyploidy has profound evolutionary consequences for land plants. Despite the availability of large phylogenetic and chromosomal data sets, estimating the rates of polyploidy and chromosomal evolution across the tree of life remains a challenging, computationally complex problem. We introduce the R package chromploid, which allows scientists to perform inference of chromosomal evolution rates across large phylogenetic trees. METHODS AND RESULTS: chromploid is an open-source package in the R environment that calculates the likelihood function of models of chromosome evolution. Models of discrete character evolution can be customized using chromploid. We demonstrate the performance of the BiChroM model, testing for associations between rates of chromosome doubling (as a proxy for polyploidy) and a binary phenotypic character, within chromploid using simulations and empirical data from Solanum. In simulations, estimated chromosome-doubling rates were unbiased and the variance decreased with larger trees, but distinguishing small differences in rates of chromosome doubling, even from large data sets, remains challenging. In the Solanum data set, a custom model of chromosome number evolution demonstrated higher rates of chromosome doubling in herbaceous species compared to woody. CONCLUSIONS: chromploid enables researchers to perform robust likelihood-based inferences using complex models of chromosome number evolution across large phylogenies.

17.
Am J Bot ; 105(3): 614-622, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29603138

RESUMEN

Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.


Asunto(s)
Difusión de la Información , Gestión de la Información , Filogenia , Plantas/genética , ADN de Plantas , Humanos , Tecnología de la Información , Análisis de Secuencia de ADN
18.
Evolution ; 71(5): 1138-1148, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28295270

RESUMEN

Although numerous studies have surveyed the frequency with which different plant characters are associated with polyploidy, few statistical tools are available to identify the factors that potentially facilitate polyploidy. We describe a new probabilistic model, BiChroM, designed to associate the frequency of polyploidy and chromosomal change with a binary phenotypic character in a phylogeny. BiChroM provides a robust statistical framework for testing differences in rates of polyploidy associated with phenotypic characters along a phylogeny while simultaneously allowing for evolutionary transitions between character states. We used BiChroM to test whether polyploidy is more frequent in woody or herbaceous plants, based on tree with 4711 eudicot species. Although polyploidy occurs in woody species, rates of chromosome doubling were over six times higher in herbaceous species. Rates of single chromosome increases or decreases were also far higher in herbaceous than woody species. Simulation experiments indicate that BiChroM performs well with little to no bias and relatively little variance at a wide range of tree depths when trees have at least 500 taxa. Thus, BiChroM provides a first step toward a rigorous statistical framework for assessing the traits that facilitate polyploidy.


Asunto(s)
Evolución Biológica , Filogenia , Poliploidía , Cromosomas , Árboles
19.
PeerJ ; 4: e2187, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547523

RESUMEN

Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain.

20.
Am J Bot ; 103(7): 1175-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27206462

RESUMEN

PREMISE OF THE STUDY: Whole-genome duplications (WGDs) can rapidly increase genome size in angiosperms. Yet their mean genome size is not correlated with ploidy. We compared three hypotheses to explain the constancy of genome size means across ploidies. The genome downsizing hypothesis suggests that genome size will decrease by a given percentage after a WGD. The genome size threshold hypothesis assumes that taxa with large genomes or large monoploid numbers will fail to undergo or survive WGDs. Finally, the genome downsizing and threshold hypothesis suggests that both genome downsizing and thresholds affect the relationship between genome size means and ploidy. METHODS: We performed nonparametric bootstrap simulations to compare observed angiosperm genome size means among species or genera against simulated genome sizes under the three different hypotheses. We evaluated the hypotheses using a decision theory approach and estimated the expected percentage of genome downsizing. KEY RESULTS: The threshold hypothesis improves the approximations between mean genome size and simulated genome size. At the species level, the genome downsizing with thresholds hypothesis best explains the genome size means with a 15% genome downsizing percentage. In the genus level simulations, the monoploid number threshold hypothesis best explains the data. CONCLUSIONS: Thresholds of genome size and monoploid number added to genome downsizing at species level simulations explain the observed means of angiosperm genome sizes, and monoploid number is important for determining the genome size mean at the genus level.


Asunto(s)
Tamaño del Genoma/genética , Genoma de Planta/genética , Magnoliopsida/genética , Ploidias , Evolución Biológica , Simulación por Computador , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...