Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Hepatol ; 79(3): 645-656, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121436

RESUMEN

BACKGROUND & AIMS: Hepatitis A virus (HAV) infections are considered not to trigger innate immunity in vivo, in contrast to hepatitis C virus (HCV). This lack of induction has been imputed to strong interference by HAV proteases 3CD and 3ABC. We aimed to elucidate the mechanisms of immune activation and counteraction by HAV and HCV in vivo and in vitro. METHODS: Albumin-urokinase-type plasminogen activator/severe combined immunodeficiency (Alb/uPA-SCID) mice with humanised livers were infected with HAV and HCV. Hepatic cell culture models were used to assess HAV and HCV sensing by Toll-like receptor 3 and retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5), respectively. Cleavage of the adaptor proteins TIR-domain-containing adapter-inducing interferon-ß (TRIF) and mitochondrial antiviral-signalling protein (MAVS) was analysed by transient and stable expression of HAV and HCV proteases and virus infection. RESULTS: We detected similar levels of interferon-stimulated gene induction in hepatocytes of HAV- and HCV-infected mice with humanised liver. In cell culture, HAV induced interferon-stimulated genes exclusively upon MDA5 sensing and depended on LGP2 (laboratory of genetics and physiology 2). TRIF and MAVS were only partially cleaved by HAV 3ABC and 3CD, not sufficiently to abrogate signalling. In contrast, HCV NS3-4A efficiently degraded MAVS, as previously reported, whereas TRIF cleavage was not detected. CONCLUSIONS: HAV induces an innate immune response in hepatocytes via MDA5/LGP2, with limited control of both pathways by proteolytic cleavage. HCV activates Toll-like receptor 3 and lacks TRIF cleavage, suggesting that this pathway mainly contributes to HCV-induced antiviral responses in hepatocytes. Our results shed new light on the induction of innate immunity and counteraction by HAV and HCV. IMPACT AND IMPLICATIONS: Understanding the mechanisms that determine the differential outcomes of HAV and HCV infections is crucial for the development of effective therapies. Our study provides insights into the interplay between these viruses and the host innate immune response in vitro and in vivo, shedding light on previously controversial or only partially investigated aspects. This knowledge could tailor the development of new strategies to combat HCV persistence, as well as improve our understanding of the factors underlying successful HAV clearance.


Asunto(s)
Hepatitis A , Hepatitis C , Evasión Inmune , Inmunidad Innata , Virus de la Hepatitis A , Hepacivirus , Animales , Ratones , Ratones SCID
3.
JHEP Rep ; 5(3): 100646, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36748051

RESUMEN

Background & Aims: Elimination of chronic HBV/HDV infection remains a major global health challenge. Targeting excessive hepatitis B surface antigen (HBsAg) release may provide an interesting window of opportunity to break immune tolerance and to achieve a functional cure using additional antivirals. Methods: We evaluated a HBsAg-specific human monoclonal antibody, as part of either a prophylactic or therapeutic strategy, against HBV/HDV infection in cell culture models and in human-liver chimeric mice. To assess prophylactic efficacy, mice were passively immunized prior to infection with HBV or HBV/HDV (coinfection and superinfection setting). Therapeutic efficacy was assessed in HBV and HBV/HDV-coinfected mice receiving 4 weeks of treatment. Viral parameters (HBV DNA, HDV RNA and HBsAg) were assessed in mouse plasma. Results: The antibody could effectively prevent HBV/HDV infection in a dose-dependent manner with IC50 values of ∼3.5 ng/ml. Passive immunization showed complete protection of mice from both HBV and HBV/HDV coinfection. Moreover, HDV superinfection was either completely prevented or at least attenuated in HBV-infected mice. Finally, antibody treatment in mice with established HBV/HDV infection resulted in a significant decline in viremia and a concomitant drop in on-treatment HBsAg, with a moderate viral rebound following treatment cessation. Conclusion: We present data on a valuable antibody candidate that could complement other antivirals in strategies aimed at achieving functional cure of chronic HBV and HDV infection. Impact and implications: Patients chronically infected with HBV may eventually develop liver cancer and are at great risk of being superinfected with HDV, which worsens and accelerates disease progression. Unfortunately, current treatments can rarely eliminate both viruses from chronically infected patients. In this study, we present data on a novel antibody that is able to prevent chronic HBV/HDV infection in a mouse model with a humanized liver. Moreover, antibody treatment of HBV/HDV-infected mice strongly diminishes viral loads during therapy. This antibody is a valuable candidate for further clinical development.

4.
Gut ; 72(6): 1186-1195, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35977815

RESUMEN

OBJECTIVE: Chronic HBV/HDV infections are a major cause of liver cancer. Current treatments can only rarely eliminate HBV and HDV. Our previously developed preS1-HDAg immunotherapy could induce neutralising antibodies to HBV in vivo and raise HBV/HDV-specific T-cells. Here, we further investigate if a heterologous prime-boost strategy can circumvent T-cell tolerance and preclude HDV superinfection in vivo. DESIGN: A DNA prime-protein boost strategy was evaluated for immunogenicity in mice and rabbits. Its ability to circumvent T-cell tolerance was assessed in immunocompetent hepatitis B surface antigen (HBsAg)-transgenic mice. Neutralisation of HBV and HDV was evaluated both in vitro and in immunodeficient human-liver chimeric mice upon adoptive transfer. RESULTS: The prime-boost strategy elicits robust HBV/HDV-specific T-cells and preS1-antibodies that can effectively prevent HBV and HDV (co-)infection in vitro and in vivo. In a mouse model representing the chronic HBsAg carrier state, active immunisation primes high levels of preS1-antibodies and HDAg-specific T-cells. Moreover, transfer of vaccine-induced antibodies completely protects HBV-infected human-liver chimeric mice from HDV superinfection. CONCLUSION: The herein described preS1-HDAg immunotherapy is shown to be immunogenic and vaccine-induced antibodies are highly effective at preventing HBV and HDV (super)infection both in vitro and in vivo. Our vaccine can complement current and future therapies for the control of chronic HBV and HDV infection.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Sobreinfección , Humanos , Ratones , Animales , Conejos , Antígenos de Hepatitis delta , Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica/prevención & control , Sobreinfección/prevención & control , Virus de la Hepatitis Delta/genética , Hepatitis B/prevención & control , Virus de la Hepatitis B/genética , Anticuerpos Antivirales , Ratones Transgénicos
5.
PLoS Pathog ; 18(6): e1010472, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35763545

RESUMEN

Hepatitis C virus (HCV) is highly diverse and grouped into eight genotypes (gts). Infectious cell culture models are limited to a few subtypes and isolates, hampering the development of prophylactic vaccines. A consensus gt1b genome (termed GLT1) was generated from an HCV infected liver-transplanted patient. GLT1 replicated to an outstanding efficiency in Huh7 cells upon SEC14L2 expression, by use of replication enhancing mutations or with a previously developed inhibitor-based regimen. RNA replication levels almost reached JFH-1, but full-length genomes failed to produce detectable amounts of infectious virus. Long-term passaging led to the adaptation of a genome carrying 21 mutations and concomitant production of high levels of transmissible infectivity (GLT1cc). During the adaptation, GLT1 spread in the culture even in absence of detectable amounts of free virus, likely due to cell-to-cell transmission, which appeared to substantially contribute to spreading of other isolates as well. Mechanistically, genome replication and particle production efficiency were enhanced by adaptation, while cell entry competence of HCV pseudoparticles was not affected. Furthermore, GLT1cc retained the ability to replicate in human liver chimeric mice, which was critically dependent on a mutation in domain 3 of nonstructural protein NS5A. Over the course of infection, only one mutation in the surface glycoprotein E2 consistently reverted to wildtype, facilitating assembly in cell culture but potentially affecting CD81 interaction in vivo. Overall, GLT1cc is an efficient gt1b infectious cell culture model, paving the road to a rationale-based establishment of new infectious HCV isolates and represents an important novel tool for the development of prophylactic HCV vaccines.


Asunto(s)
Hepacivirus , Hepatitis C , Animales , Técnicas de Cultivo de Célula , Genotipo , Humanos , Ratones , Mutación , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
6.
Proc Natl Acad Sci U S A ; 117(3): 1731-1741, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896581

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.


Asunto(s)
Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Hepatitis E/metabolismo , Hepatocitos/virología , Animales , Antivirales/farmacología , Carcinoma Hepatocelular , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Genotipo , Células Hep G2 , Hepatitis E/virología , Virus de la Hepatitis E/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Replicón , Ribavirina/metabolismo , Porcinos , Carga Viral , Replicación Viral
7.
Front Immunol ; 9: 1032, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867998

RESUMEN

With more than 71 million chronically infected people, the hepatitis C virus (HCV) is a major global health concern. Although new direct acting antivirals have significantly improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant viral variants, and unavailability of a protective vaccine represent challenges for complete HCV eradication. Relevant animal models are required, and additional development remains necessary, to effectively study HCV biology, virus-host interactions and for the evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, the only non-human primate susceptible to experimental HCV infection, has been used extensively to study HCV infection, particularly to analyze the innate and adaptive immune response upon infection. However, financial, practical, and especially ethical constraints have urged the exploration of alternative small animal models. These include different types of transgenic mice, immunodeficient mice of which the liver is engrafted with human hepatocytes (humanized mice) and, more recently, immunocompetent rodents that are susceptible to infection with viruses that are closely related to HCV. In this review, we provide an overview of the currently available animal models that have proven valuable for the study of HCV, and discuss their main benefits and weaknesses.


Asunto(s)
Modelos Animales de Enfermedad , Hepatitis C/inmunología , Inmunidad Adaptativa , Animales , Antivirales/uso terapéutico , Hepacivirus/inmunología , Hepatitis C/tratamiento farmacológico , Inmunidad Innata , Ratones , Ratones Transgénicos , Pan troglodytes , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...