Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 44(7): 1167-72, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16516366

RESUMEN

The present study examined the interaction of hypercaloric diet (HD) and physical exercise on lipid profile and oxidative stress in serum and liver of rats. Male Wistar rats (60-days-old) were fed with a control (C) and hypercaloric diet (H). Each of the two dietary groups (C and H) was divided into three subgroups (n=8), sedentary (CS and HS), exercised 2days a week (CE2 and HE2) and exercised 5days a week (CE5 and HE5). The swimming was selected as a model for exercise performance. After 8-weeks exercised rats showed decreased lactate dehydrogenase serum activities, demonstrating the effectiveness of the swimming as an aerobic-training protocol. Exercise 5-days a week reduced the body weight gain. Triacylglycerol (TG) and very low-density lipoprotein (VLDL-C) were increased in HD-fed rats. HE5 and CE5 rats had decreased TG, VLDL-C and cholesterol. HE2 rats had enhanced high-density lipoprotein (HDL-C) in serum. No alterations were observed in lipid hydroperoxide (LH), while total antioxidant substances (TAS) were increased in serum of exercised rats. HD-fed rats had hepatic TG accumulation. Superoxide dismutase activities were increased and catalase was decreased in liver of exercised rats. The interaction of HD and physical exercise reduced TAS and enhanced LH levels in hepatic tissue. In conclusion, this study confirmed the beneficial effect of physical exercise as a dyslipidemic-lowering component. Interaction of HD and physical exercise had discrepant effects on serum and liver oxidative stress. The interaction of HD and physical exercise reduced the oxidative stress in serum. HD and physical exercise interaction had pro-oxidant effect on hepatic tissue, suggesting that more studies should be done before using physical exercise as an adjunct therapy to reduce the adverse effects of HD.


Asunto(s)
Antioxidantes/metabolismo , Ingestión de Energía/fisiología , Lípidos/sangre , Estrés Oxidativo/efectos de los fármacos , Condicionamiento Físico Animal/fisiología , Animales , Ingestión de Alimentos/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Obesidad/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar , Natación/fisiología , Aumento de Peso/efectos de los fármacos
2.
Food Chem Toxicol ; 42(12): 2053-60, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15500942

RESUMEN

The present study was carried out to investigate the effects of copper (Cu) intake on lipid profile, oxidative stress and tissue damage in normal and in diabetic condition. Since diabetes mellitus is a situation of high-risk susceptibility to toxic compounds, we examined potential early markers of Cu excess in diabetic animals. Male Wistar rats, at 60-days-old were divided into six groups of eight rats each. The control(C) received saline from gastric tube, the no-diabetic(Cu-10), treated with 10 mg/kg of Cu(Cu(++)-CuSO4, gastric tube), no-diabetic with Cu-60 mg/kg(Cu-60), diabetic(D), diabetic low-Cu(DCu-10) and diabetic high-Cu(DCu-60). Diabetes was induced by an ip injection of streptozotocin (60 mg/kg). After 30 days of treatments, no changes were observed in serum lactate dehydrogenase, alanine transaminase and alkaline phosphatase, indicating no adverse effects on cardiac and hepatic tissues. D-rats had glucose intolerance and dyslipidemic profile. Cholesterol and LDL-cholesterol were higher in Cu-60 and DCu-60 than in C, Cu-10 and D and DCu-10 groups respectively. Cu-60 rats had higher lipid hydroperoxide (HP) and lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) serum activities than C and Cu-10 rats. LH was increased and GSH-Px was decreased, while no alterations were observed in SOD and catalase in serum of DCu-60 animals. DCu-60 rats had increased urinary glucose, creatinine and albumin. In conclusion, Cu intake at high concentration induced adverse effects on lipid profile, associated with oxidative stress and diminished activities of antioxidant enzymes. Diabetic animals were more susceptible to copper toxicity. High Cu intake induced dyslipidemic profile, oxidative stress and kidney dysfunction in diabetic condition. Copper renal toxicity was associated with oxidative stress and reduction at least, one of the antioxidant enzymes.


Asunto(s)
Cobre/toxicidad , Enfermedades Renales/inducido químicamente , Lípidos/sangre , Estrés Oxidativo/efectos de los fármacos , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Ingestión de Alimentos/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA