Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(2): 110674, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417722

RESUMEN

Liver physiology is circadian and sensitive to feeding and insulin. Food intake regulates insulin secretion and is a dominant signal for the liver clock. However, how much insulin contributes to the effect of feeding on the liver clock and rhythmic gene expression remains to be investigated. Insulin action partly depends on changes in insulin receptor (IR)-dependent gene expression. Here, we use hepatocyte-restricted gene deletion of IR to evaluate its role in the regulation and oscillation of gene expression as well as in the programming of the circadian clock in the adult mouse liver. We find that, in the absence of IR, the rhythmicity of core-clock gene expression is altered in response to day-restricted feeding. This change in core-clock gene expression is associated with defective reprogramming of liver gene expression. Our data show that an intact hepatocyte insulin receptor is required to program the liver clock and associated rhythmic gene expression.


Asunto(s)
Factores de Transcripción ARNTL , Relojes Circadianos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Expresión Génica , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Ratones , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
2.
Mol Metab ; 57: 101438, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35007789

RESUMEN

OBJECTIVE: A common feature of metabolic diseases is their association with chronic low-grade inflammation. While enhanced gut permeability and systemic bacterial endotoxin translocation have been suggested as key players of this metaflammation, the mechanistic bases underlying these features upon the diabesity cascade remain partly understood. METHODS: Here, we show in mice that, independently of obesity, the induction of acute and global insulin resistance and associated hyperglycemia, upon treatment with an insulin receptor (IR) antagonist (S961), elicits gut hyperpermeability without triggering systemic inflammatory response. RESULTS: Of note, S961-treated diabetic mice display major defects of gut barrier epithelial functions, such as increased epithelial paracellular permeability and impaired cell-cell junction integrity. We also observed in these mice the early onset of a severe gut dysbiosis, as characterized by the bloom of pro-inflammatory Proteobacteria, and the later collapse of Paneth cells antimicrobial defense. Interestingly, S961 treatment discontinuation is sufficient to promptly restore both the gut microbial balance and the intestinal barrier integrity. Moreover, fecal transplant approaches further confirm that S961-mediated dybiosis contributes at least partly to the disruption of the gut selective epithelial permeability upon diabetic states. CONCLUSIONS: Together, our results highlight that insulin signaling is an indispensable gatekeeper of intestinal barrier integrity, acting as a safeguard against microbial imbalance and acute infections by enteropathogens.


Asunto(s)
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Resistencia a la Insulina , Animales , Disbiosis/metabolismo , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Ratones
3.
Gut ; 71(2): 296-308, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33593807

RESUMEN

OBJECTIVE: Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic ß-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN: We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS: We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION: Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.


Asunto(s)
Bacterias/aislamiento & purificación , Diabetes Mellitus Tipo 1/complicaciones , Disbiosis/etiología , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Animales , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Hiperglucemia/etiología , Inflamación/etiología , Mucosa Intestinal/metabolismo , Ratones
4.
iScience ; 24(3): 102218, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33748706

RESUMEN

TxNIP (Thioredoxin-interacting protein) is considered as a potential drug target for type 2 diabetes. Although TxNIP expression is correlated with hyperglycemia and glucotoxicity in pancreatic ß cells, its regulation in liver cells has been less investigated. In the current study, we aim at providing a better understanding of Txnip regulation in hepatocytes in response to physiological stimuli and in the context of hyperglycemia in db/db mice. We focused on regulatory pathways governed by ChREBP (Carbohydrate Responsive Element Binding Protein) and FoxO1 (Forkhead box protein O1), transcription factors that play central roles in mediating the effects of glucose and fasting on gene expression, respectively. Studies using genetically modified mice reveal that hepatic TxNIP is up-regulated by both ChREBP and FoxO1 in liver cells and that its expression strongly correlates with fasting, suggesting a major role for this protein in the physiological adaptation to nutrient restriction.

5.
Sci Rep ; 10(1): 5186, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198362

RESUMEN

The Wnt/ß-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/ß-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/ß-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/ß-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/ß-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/ß-catenin pathway.


Asunto(s)
Insulina/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/efectos de los fármacos , Aciltransferasas/metabolismo , Animales , Ácidos Grasos Monoinsaturados/farmacología , Hepatocitos/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-31164864

RESUMEN

Thioredoxin interacting protein (TxNIP), which strongly responds to glucose, has emerged as a central mediator of glucotoxicity in pancreatic ß cells. TxNIP is a scaffold protein interacting with target proteins to inhibit or stimulate their activity. Recent studies reported that high glucose stimulates the interaction of TxNIP with the inflammasome protein NLRP3 (NLR family, pyrin domain containing 3) to increase interleukin-1 ß (IL1ß) secretion by pancreatic ß cells. To better understand the regulation of TxNIP by glucose in pancreatic ß cells, we investigated the implication of O-linked ß-N-acetylglucosamine (O-GlcNAcylation) in regulating TxNIP at the posttranslational level. O-GlcNAcylation of proteins is controlled by two enzymes: the O-GlcNAc transferase (OGT), which transfers a monosaccharide to serine/threonine residues on target proteins, and the O-GlcNAcase (OGA), which removes it. Our study shows that TxNIP is subjected to O-GlcNAcylation in response to high glucose concentrations in ß cell lines. Modification of the O-GlcNAcylation pathway through manipulation of OGT or OGA expression or activity significantly modulates TxNIP O-GlcNAcylation in INS1 832/13 cells. Interestingly, expression and O-GlcNAcylation of TxNIP appeared to be increased in islets of diabetic rodents. At the mechanistic level, the induction of the O-GlcNAcylation pathway in human and rat islets promotes inflammasome activation as evidenced by enhanced cleaved IL1ß. Overexpression of OGT in HEK293 or INS1 832/13 cells stimulates TxNIP and NLRP3 interaction, while reducing TxNIP O-GlcNAcylation through OGA overexpression destabilizes this interaction. Altogether, our study reveals that O-GlcNAcylation represents an important regulatory mechanism for TxNIP activity in ß cells.

7.
Sci Rep ; 7(1): 16901, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203791

RESUMEN

Metabolic diseases are characterized by a decreased action of insulin. During the course of the disease, usual treatments frequently fail and patients are finally submitted to insulinotherapy. There is thus a need for innovative therapeutic strategies to improve insulin action. Growth factor receptor-bound protein 14 (Grb14) is a molecular adapter that specifically binds to the activated insulin receptor (IR) and inhibits its tyrosine kinase activity. Molecules disrupting Grb14-IR binding are therefore potential insulin-sensitizing agents. We used Structure-Based Virtual Ligand Screening to generate a list of 1000 molecules predicted to hinder Grb14-IR binding. Using an acellular bioluminescence resonance energy transfer (BRET) assay, we identified, out of these 1000 molecules, 3 compounds that inhibited Grb14-IR interaction. Their inhibitory effect on insulin-induced Grb14-IR interaction was confirmed in co-immunoprecipitation experiments. The more efficient molecule (C8) was further characterized. C8 increased downstream Ras-Raf and PI3-kinase insulin signaling, as shown by BRET experiments in living cells. Moreover, C8 regulated the expression of insulin target genes in mouse primary hepatocytes. These results indicate that C8, by reducing Grb14-IR interaction, increases insulin signalling. The use of C8 as a lead compound should allow for the development of new molecules of potential therapeutic interest for the treatment of diabetes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptor de Insulina/metabolismo , Sulfanilamidas/química , Proteínas Adaptadoras Transductoras de Señales/química , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Insulina/metabolismo , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Receptor de Insulina/química , Transducción de Señal/efectos de los fármacos , Sulfanilamidas/metabolismo , Sulfanilamidas/farmacología
8.
Cell Rep ; 21(2): 403-416, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29020627

RESUMEN

While the physiological benefits of the fibroblast growth factor 21 (FGF21) hepatokine are documented in response to fasting, little information is available on Fgf21 regulation in a glucose-overload context. We report that peroxisome-proliferator-activated receptor α (PPARα), a nuclear receptor of the fasting response, is required with the carbohydrate-sensitive transcription factor carbohydrate-responsive element-binding protein (ChREBP) to balance FGF21 glucose response. Microarray analysis indicated that only a few hepatic genes respond to fasting and glucose similarly to Fgf21. Glucose-challenged Chrebp-/- mice exhibit a marked reduction in FGF21 production, a decrease that was rescued by re-expression of an active ChREBP isoform in the liver of Chrebp-/- mice. Unexpectedly, carbohydrate challenge of hepatic Pparα knockout mice also demonstrated a PPARα-dependent glucose response for Fgf21 that was associated with an increased sucrose preference. This blunted response was due to decreased Fgf21 promoter accessibility and diminished ChREBP binding onto Fgf21 carbohydrate-responsive element (ChoRE) in hepatocytes lacking PPARα. Our study reports that PPARα is required for the ChREBP-induced glucose response of FGF21.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glucosa/metabolismo , Proteínas Nucleares/metabolismo , PPAR alfa/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Cultivadas , Femenino , Factores de Crecimiento de Fibroblastos/genética , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , PPAR alfa/genética , Elementos de Respuesta , Factores de Transcripción/genética
9.
Metabolism ; 70: 133-151, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28403938

RESUMEN

Identification of the Mondo glucose-responsive transcription factors family, including the MondoA and MondoB/ChREBP paralogs, has shed light on the mechanism whereby glucose affects gene transcription. They have clearly emerged, in recent years, as key mediators of glucose sensing by multiple cell types. MondoA and ChREBP have overlapping yet distinct expression profiles, which underlie their downstream targets and separate roles in regulating genes involved in glucose metabolism. MondoA can restrict glucose uptake and influences energy utilization in skeletal muscle, while ChREBP signals energy storage through de novo lipogenesis in liver and white adipose tissue. Because Mondo proteins mediate metabolic adaptations to changing glucose levels, a better understanding of cellular glucose sensing through Mondo proteins will likely uncover new therapeutic opportunities in the context of the imbalanced glucose homeostasis that accompanies metabolic diseases such as type 2 diabetes and cancer. Here, we provide an overview of structural homologies, transcriptional partners as well as the nutrient and hormonal mechanisms underlying Mondo proteins regulation. We next summarize their relative contribution to energy metabolism changes in physiological states and the evolutionary conservation of these pathways. Finally, we discuss their possible targeting in human pathologies.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción/fisiología , Animales , Metabolismo Energético/fisiología , Glucosa/metabolismo , Glucólisis , Humanos , Lipogénesis
10.
Hepatology ; 65(4): 1352-1368, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27981611

RESUMEN

Metabolic diseases such as obesity and type 2 diabetes are recognized as independent risk factors for hepatocellular carcinoma (HCC). Hyperinsulinemia, a hallmark of these pathologies, is suspected to be involved in HCC development. The molecular adapter growth factor receptor binding protein 14 (Grb14) is an inhibitor of insulin receptor catalytic activity, highly expressed in the liver. To study its involvement in hepatocyte proliferation, we specifically inhibited its liver expression using a short hairpin RNA strategy in mice. Enhanced insulin signaling upon Grb14 inhibition was accompanied by a transient induction of S-phase entrance by quiescent hepatocytes, indicating that Grb14 is a potent repressor of cell division. The proliferation of Grb14-deficient hepatocytes was cell-autonomous as it was also observed in primary cell cultures. Combined Grb14 down-regulation and insulin signaling blockade using pharmacological approaches as well as genetic mouse models demonstrated that Grb14 inhibition-mediated hepatocyte division involved insulin receptor activation and was mediated by the mechanistic target of rapamycin complex 1-S6K pathway and the transcription factor E2F1. In order to determine a potential dysregulation in GRB14 gene expression in human pathophysiology, a collection of 85 human HCCs was investigated. This revealed a highly significant and frequent decrease in GRB14 expression in hepatic tumors when compared to adjacent nontumoral parenchyma, with 60% of the tumors exhibiting a reduced Grb14 mRNA level. CONCLUSION: Our study establishes Grb14 as a physiological repressor of insulin mitogenic action in the liver and further supports that dysregulation of insulin signaling is associated with HCC. (Hepatology 2017;65:1352-1368).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Neoplasias Hepáticas/fisiopatología , Receptor de Insulina/metabolismo , Animales , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Sensibilidad y Especificidad
11.
Mol Cell Biol ; 36(16): 2168-81, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27215388

RESUMEN

A long-standing paradox in the pathophysiology of metabolic diseases is the selective insulin resistance of the liver. It is characterized by a blunted action of insulin to reduce glucose production, contributing to hyperglycemia, while de novo lipogenesis remains insulin sensitive, participating in turn to hepatic steatosis onset. The underlying molecular bases of this conundrum are not yet fully understood. Here, we established a model of selective insulin resistance in mice by silencing an inhibitor of insulin receptor catalytic activity, the growth factor receptor binding protein 14 (Grb14) in liver. Indeed, Grb14 knockdown enhanced hepatic insulin signaling but also dramatically inhibited de novo fatty acid synthesis. In the liver of obese and insulin-resistant mice, downregulation of Grb14 markedly decreased blood glucose and improved liver steatosis. Mechanistic analyses showed that upon Grb14 knockdown, the release of p62/sqstm1, a partner of Grb14, activated the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), which in turn repressed the lipogenic nuclear liver X receptor (LXR). Our study reveals that Grb14 acts as a new signaling node that regulates lipogenesis and modulates insulin sensitivity in the liver by acting at a crossroad between the insulin receptor and the p62-Nrf2-LXR signaling pathways.


Asunto(s)
Resistencia a la Insulina , Lipogénesis , Hígado/metabolismo , Proteínas/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hígado/citología , Receptores X del Hígado/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas/metabolismo , Receptor de Insulina/metabolismo
12.
Nat Commun ; 6: 8283, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387534

RESUMEN

Defective hepatic insulin receptor (IR) signalling is a pathogenic manifestation of metabolic disorders including obesity and diabetes. The endo/lysosomal trafficking system may coordinate insulin action and nutrient homeostasis by endocytosis of IR and the autophagic control of intracellular nutrient levels. Here we show that class III PI3K--a master regulator of endocytosis, endosomal sorting and autophagy--provides negative feedback on hepatic insulin signalling. The ultraviolet radiation resistance-associated gene protein (UVRAG)-associated class III PI3K complex interacts with IR and is stimulated by insulin treatment. Acute and chronic depletion of hepatic Vps15, the regulatory subunit of class III PI3K, increases insulin sensitivity and Akt signalling, an effect that requires functional IR. This is reflected by FoxO1-dependent transcriptional defects and blunted gluconeogenesis in Vps15 mutant cells. On depletion of Vps15, the metabolic syndrome in genetic and diet-induced models of insulin resistance and diabetes is alleviated. Thus, feedback regulation of IR trafficking and function by class III PI3K may be a therapeutic target in metabolic conditions of insulin resistance.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Diabetes Mellitus/metabolismo , Retroalimentación Fisiológica , Homeostasis , Humanos , Resistencia a la Insulina , Hígado/enzimología , Masculino , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética
13.
J Biol Chem ; 290(32): 19653-65, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26109071

RESUMEN

Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.


Asunto(s)
Caspasa 3/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Oocitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Activadora de GTPasa p120/metabolismo , Animales , Caspasa 3/genética , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Femenino , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina , Microinyecciones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oocitos/citología , Oocitos/efectos de los fármacos , Ovario/citología , Ovario/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Cultivo Primario de Células , Estructura Terciaria de Proteína , Proteolisis , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Xenopus laevis , Proteína Activadora de GTPasa p120/genética
14.
Cell Signal ; 27(4): 798-806, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25578860

RESUMEN

Beyond its key role in the control of energy metabolism, insulin is also an important regulator of cell division and neoplasia. However, the molecular events involved in insulin-driven cell proliferation are not fully elucidated. Here, we show that the ubiquitin ligase Chfr, a checkpoint protein involved in G2/M transition, is a new effector involved in the control of insulin-induced cell proliferation. Chfr is identified as a partner of the molecular adapter Grb14, an inhibitor of insulin signalling. Using mammalian cell lines and the Xenopus oocyte as a model of G2/M transition, we demonstrate that Chfr potentiates the inhibitory effect of Grb14 on insulin-induced cell division. Insulin stimulates Chfr binding to the T220 residue of Grb14. Both Chfr binding site and Grb14 C-ter BPS-SH2 domain, mediating IR binding and inhibition, are required to prevent insulin-induced cell division. Targeted mutagenesis revealed that Chfr ligase activity and phosphorylation of its T39 residue, a target of Akt, are required to potentiate Grb14 inhibitory activity. In the presence of insulin, the binding of Chfr to Grb14 activates its ligase activity, leading to Aurora A and Polo-like kinase degradation and blocking cell division. Collectively, our results show that Chfr and Grb14 collaborate in a negative feedback loop controlling insulin-stimulated cell division.


Asunto(s)
Proliferación Celular , Insulina/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Células COS , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Chlorocebus aethiops , Técnicas de Inactivación de Genes , Mutagénesis , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Transducción de Señal , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Xenopus , Quinasa Tipo Polo 1
15.
Biol Aujourdhui ; 208(2): 119-36, 2014.
Artículo en Francés | MEDLINE | ID: mdl-25190572

RESUMEN

The action of insulin on metabolism and cell growth is mediated by a specific receptor tyrosine kinase, which, through phosphorylation of several substrates, triggers the activation of two major signaling pathways, the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway and the Ras/extracellular signal-regulated kinase (ERK) pathway. Insulin-induced activation of the receptor and downstream signaling is also subjected to a negative feedback control involving several mechanisms, among which the interaction of the insulin receptor and its substrates with inhibitory proteins. After summarizing the major mechanisms underlying the activation and attenuation of insulin signaling, this review focuses on its control by the Grb14 adaptor protein. Grb14 has been identif-ied as an inhibitor of insulin signaling and action, and is involved in insulin resistance associated with type 2 diabetes and obesity. Studies on the molecular mechanism of action of Grb14 have shown that, through interaction with the activated insulin receptor, Grb14 inhibits its catalytic activity and the activation of downstream signaling. However, the consequences of Grb14 gene invalidation are complex and tissue-specific, and some effects of Grb14 on insulin signaling appear to be linked to its interaction with effector proteins downstream the insulin receptor. Pharmacological inhibition of Grb14 should allow to enhance insulin sensitivity and improve energy homeostasis in insulin-resistant states.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Insulina/metabolismo , Animales , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Oncogénica v-akt/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/genética , Proteínas ras/fisiología
16.
Hepatology ; 59(6): 2344-57, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24214913

RESUMEN

UNLABELLED: ß-catenin signaling can be both a physiological and oncogenic pathway in the liver. It controls compartmentalized gene expression, allowing the liver to ensure its essential metabolic function. It is activated by mutations in 20%-40% of hepatocellular carcinomas (HCCs) with specific metabolic features. We decipher the molecular determinants of ß-catenin-dependent zonal transcription using mice with ß-catenin-activated or -inactivated hepatocytes, characterizing in vivo their chromatin occupancy by T-cell factor (Tcf)-4 and ß-catenin, transcriptome, and metabolome. We find that Tcf-4 DNA bindings depend on ß-catenin. Tcf-4/ß-catenin binds Wnt-responsive elements preferentially around ß-catenin-induced genes. In contrast, genes repressed by ß-catenin bind Tcf-4 on hepatocyte nuclear factor 4 (Hnf-4)-responsive elements. ß-Catenin, Tcf-4, and Hnf-4α interact, dictating ß-catenin transcription, which is antagonistic to that elicited by Hnf-4α. Finally, we find the drug/bile metabolism pathway to be the one most heavily targeted by ß-catenin, partly through xenobiotic nuclear receptors. CONCLUSIONS: ß-catenin patterns the zonal liver together with Tcf-4, Hnf-4α, and xenobiotic nuclear receptors. This network represses lipid metabolism and exacerbates glutamine, drug, and bile metabolism, mirroring HCCs with ß-catenin mutational activation.


Asunto(s)
Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Neoplasias Hepáticas/etiología , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , beta Catenina/metabolismo , Animales , Cromatina/metabolismo , Redes Reguladoras de Genes , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptor Cross-Talk , beta Catenina/genética
17.
Ann Endocrinol (Paris) ; 74(2): 74-8, 2013 May.
Artículo en Francés | MEDLINE | ID: mdl-23582850

RESUMEN

Epidemiological studies provide evidence for a close relationship between diabetes and cancer. Insulin is in fact a growth factor, and its binding to its membrane receptor activates intracellular signaling pathways involved in the regulation of both metabolism and cell proliferation. The balance between mitogenic and metabolic actions of insulin can be modulated by various mechanisms, including the way the ligand binds to its receptor or to the closely related insulin-like growth factor-1 (IGF-1) receptor. Cross-talks with other signaling pathways implicated in cell proliferation have also been described, like the Wnt/ß catenin pathway, and involve the activation of common downstream effectors such as insulin receptor substrate-1 (IRS-1). Finally, the identification of new proteins activated by insulin and involved in intracellular signaling would allow a better understanding of the complex connections linking metabolic and proliferative regulatory pathways. As an example, the molecular adaptor Grb14, which is a specific inhibitor of insulin receptor catalytic activity, also controls insulin-induced metabolic and mitogenic signaling pathways through post-receptor mechanisms that remain to be fully elucidated.


Asunto(s)
Proliferación Celular , Complicaciones de la Diabetes/metabolismo , Insulina/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptor Cross-Talk/fisiología , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Complicaciones de la Diabetes/epidemiología , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/fisiología , Neoplasias/epidemiología , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/fisiología , Factores de Riesgo , Transducción de Señal/fisiología , Somatomedinas/genética , Somatomedinas/metabolismo , Somatomedinas/fisiología
18.
Clin Res Hepatol Gastroenterol ; 37(1): 30-5, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22884299

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is an emerging epidemic disease. It represents a large spectrum of liver diseases, and affects both adults and children. The etiology of NAFLD is multifactorial. Indeed, several events such as caloric imbalance including sedentary lifestyle, obesity and/or a predisposing genetic background are key players in the increasing risk for NAFLD development and its progression. Recently, a sequence variation within the gene encoding for patatin-like phospholipase containing 3 (PNPLA3, rs738409) was found to modulate steatosis, inflammation and fibrosis in NAFLD. It was also demonstrated as a novel genetic marker associated with progressive ALD (alcoholic liver disease). In this mini-review, we summarize the current knowledge on (i) PNPLA3 variant(s) in the pathogenesis of liver diseases, and (ii) PNPLA3 gene regulation and potential function in liver.


Asunto(s)
Hígado Graso/genética , Lipasa/genética , Lipasa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Progresión de la Enfermedad , Marcadores Genéticos/genética , Humanos , Enfermedad del Hígado Graso no Alcohólico
19.
FEBS J ; 280(3): 794-816, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23190452

RESUMEN

The effects of insulin and type 1 insulin-like growth factor (IGF-1) on metabolism, growth and survival are mediated by their association with specific receptor tyrosine kinases, which results in both receptor and substrate phosphorylation. Phosphotyrosine residues on receptors and substrates provide docking sites for signaling proteins containing SH2 (Src homology 2) domains, including molecular adaptors. This review focuses on the regulation of insulin/IGF-1 signaling and action by two adaptor families with a similar domain organization: the growth factor receptor-bound proteins Grb7/10/14 and the SH2B proteins. Both Grb10/14 and SH2B1/B2 associate with the activation loop of insulin/IGF-1 receptors through their SH2 domains, but association of Grb10/14 also involves their unique BPS domain. Consistent with Grb14 binding as a pseudosubstrate to the kinase active site, insulin/IGF-induced activation of receptors and downstream signaling pathways in cultured cells is inhibited by Grb10/14 adaptors, but is potentiated by SH2B1/B2 adaptors. Accordingly, Grb10 and Grb14 knockout mice show improved insulin/IGF sensitivity in vivo, and, for Grb10, overgrowth and increased skeketal muscle and pancreatic ß-cell mass. Conversely, SH2B1-depleted mice display insulin and IGF-1 resistance, with peripheral depletion leading to reduced adiposity and neuronal depletion leading to obesity through associated leptin resistance. Grb10/14 and SH2B1 adaptors also modulate insulin/IGF-1 action by interacting with signaling components downstream of receptors and exert several tissue-specific effects. The identification of Grb10/14 and SH2B1 as physiological regulators of insulin signaling and action, together with observations that variants at their gene loci are associated with obesity and/or insulin resistance, highlight them as potential therapeutic targets for these conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteína Adaptadora GRB10/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Sitios de Unión/genética , Proteína Adaptadora GRB10/genética , Humanos , Modelos Biológicos , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
20.
Diabetes ; 60(5): 1399-413, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21471514

RESUMEN

OBJECTIVE: Carbohydrate-responsive element-binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better understand the regulation of ChREBP activity in the liver, we investigated the implication of O-linked ß-N-acetylglucosamine (O-GlcNAc or O-GlcNAcylation), an important glucose-dependent posttranslational modification playing multiple roles in transcription, protein stabilization, nuclear localization, and signal transduction. RESEARCH DESIGN AND METHODS: O-GlcNAcylation is highly dynamic through the action of two enzymes: the O-GlcNAc transferase (OGT), which transfers the monosaccharide to serine/threonine residues on a target protein, and the O-GlcNAcase (OGA), which hydrolyses the sugar. To modulate ChREBP(OG) in vitro and in vivo, the OGT and OGA enzymes were overexpressed or inhibited via adenoviral approaches in mouse hepatocytes and in the liver of C57BL/6J or obese db/db mice. RESULTS: Our study shows that ChREBP interacts with OGT and is subjected to O-GlcNAcylation in liver cells. O-GlcNAcylation stabilizes the ChREBP protein and increases its transcriptional activity toward its target glycolytic (L-PK) and lipogenic genes (ACC, FAS, and SCD1) when combined with an active glucose flux in vivo. Indeed, OGT overexpression significantly increased ChREBP(OG) in liver nuclear extracts from fed C57BL/6J mice, leading in turn to enhanced lipogenic gene expression and to excessive hepatic triglyceride deposition. In the livers of hyperglycemic obese db/db mice, ChREBP(OG) levels were elevated compared with controls. Interestingly, reducing ChREBP(OG) levels via OGA overexpression decreased lipogenic protein content (ACC, FAS), prevented hepatic steatosis, and improved the lipidic profile of OGA-treated db/db mice. CONCLUSIONS: Taken together, our results reveal that O-GlcNAcylation represents an important novel regulation of ChREBP activity in the liver under both physiological and pathophysiological conditions.


Asunto(s)
Hígado Graso/metabolismo , Hígado/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Línea Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Hígado Graso/enzimología , Hígado Graso/genética , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/genética , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...