Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Eng Part A ; 26(1-2): 28-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31269875

RESUMEN

Osteoarthritis (OA) is a widespread disease that continues to lack approved and efficacious treatments that modify disease progression. Micronized dehydrated human amnion/chorion membrane (µ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. The objectives of this study were to characterize the particle size distributions of two µ-dHACM formulations and to investigate the influence of these distributions on the in vivo therapeutic efficacy of µ-dHACM. Male Lewis rats underwent medial meniscus transection (MMT) or sham surgery, and intra-articular injections of saline, µ-dHACM, or reduced particle size µ-dHACM (RPS µ-dHACM) were administered at 24 hours postsurgery (n = 9 per treatment group). After 3 weeks, the animals were euthanized, and left legs harvested for equilibrium partitioning of an ionic contrast agent microcomputed tomography and histological analysis. µ-dHACM and RPS µ-dHACM particles were fluorescently tagged and particle clearance was tracked in vivo for up to 42 days postsurgery. Protein elution from both formulations was quantified in vitro. Treatment with µ-HACM, but not RPS µ-dHACM, reduced lesion volume in the MMT model 3 weeks postsurgery. In contrast, RPS µ-dHACM increased cartilage surface roughness and osteophyte cartilage thickness and volume compared to saline treatment. There was no difference of in vivo fluorescently tagged particle clearance between the two µ-dHACM sizes. RPS µ-dHACM showed significantly greater protein elution in vitro over 21 days. Overall, delivery of RPS µ-dHACM did result in an increase of in vivo joint degeneration and in vitro protein elution compared to µ-dHACM, but did not result in differences in joint clearance in vivo. These results suggest that particle size and factor elution may be tailorable factors that are important to optimize for particulate amniotic membrane treatment to be an effective therapy for OA. Impact Statement Osteoarthritis (OA) is a widespread disease that continues to lack treatments that modify the progression of the disease. Micronized dehydrated human amnion/chorion membrane (µ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. This work investigates the effects of particle size profile of the µ-dHACM particles and lays out the methods used in these studies. The results of this work will guide engineers in designing µ-dHACM treatments specifically and disease-modifying OA therapeutics generally, and it demonstrates the utility of novel therapeutic evaluation methods such as contrast-enhanced microcomputed tomography.


Asunto(s)
Amnios/química , Osteoartritis/terapia , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Masculino , Meniscos Tibiales/cirugía , Ratas , Ratas Endogámicas Lew , Microtomografía por Rayos X
2.
Acta Biomater ; 43: 139-149, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27449339

RESUMEN

UNLABELLED: Limited supplies of healthy autologous or allogeneic cartilage sources have inspired a growing interest in xenogeneic cartilage matrices as biological scaffolds for cartilage tissue engineering. The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible. Human MSCs cultured on hydrogels from shark skull cartilage, pig articular cartilage, and pig auricular cartilage ECM had increased expression of chondrocyte markers and decreased secretion of angiogenic factors VEGF-A and FGF2 in comparison to MSCs cultured on tissue culture polystyrene (TCPS) at one week. MSCs grown on shark ECM gels had decreased type-1 collagen mRNA as compared to all other groups. Degradation products of the cartilage ECM gels and soluble factors released by the matrices increased chondrogenic and decreased angiogenic mRNA levels, indicating that the processed ECM retains biochemically active proteins that can stimulate chondrogenic differentiation. In conclusion, this work supports the use of cartilage matrix-derived hydrogels for chondrogenic differentiation of MSCs and cartilage tissue engineering. Longer-term studies and positive controls will be needed to support these results to definitively demonstrate stimulation of chondrocyte differentiation, and particularly to verify that calcification without endochondral ossification does not occur as it does in shark cartilage. STATEMENT OF SIGNIFICANCE: The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible for this induction. Sharks are an especially interesting model for cartilage regeneration because their entire skeleton is composed of cartilage and they do not undergo endochondral ossification. Culturing human MSCs on porcine and shark cartilage ECM gels directly, with ECM gel conditioned media, or degradation products increased mRNA levels of chondrogenic factors while decreasing angiogenic factors. These studies indicate that xenogeneic cartilage ECMs have potential as biodegradable scaffolds capable of stimulating chondrogenesis while preventing angiogenesis for regenerative medicine applications and that ECM species selection can yield differential effects.


Asunto(s)
Cartílago Articular/metabolismo , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Matriz Extracelular/metabolismo , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Inductores de la Angiogénesis/metabolismo , Animales , Medios de Cultivo Condicionados/farmacología , ADN/metabolismo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Tiburones , Solubilidad , Sus scrofa
3.
J Mater Chem B ; 4(20): 3594-3607, 2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32263389

RESUMEN

While mesenchymal stem cell (MSC)-based strategies for critically-sized bone defect repair hold promise, poor cell survival in vivo remains a significant barrier to the translation of these therapeutics. One method employed to extend the survival of MSCs is the formation of three-dimensional aggregates, a strategy which modulates the immunomodulatory secretome of the cells, thereby influencing the local inflammatory environment and potentially bone tissue repair. Enrichment of cell-seeded hydrogels with oxygen carriers to counter the hypoxic conditions encountered in vivo or co-delivery of cells with growth factors, are also strategies employed to modulate the cell micro-environment. In this study, we examined the effect of human MSC (hMSC) and rat MSC (rMSC) aggregation on cell survival and bone tissue regeneration within both immunocompromised (nude) and syngeneic (Lewis) rat models. Despite a heightened release of paracrine factors from stem cell aggregates in vitro, the delivery of hMSC or rMSC aggregates in their respective rat models had no beneficial impact on cell survival, construct vascularization, or critically-sized bone defect repair. Co-delivery of oxygen carrier perfluorotributylamine (PFTBA) within the alginate hydrogel delivery vehicle impeded in vivo bone regeneration in both MSC-seeded and acellular constructs. Although rMSC seeding was observed to enhance the osteoinductive potential of bone morphogenetic protein 2 (BMP-2)-containing constructs in vitro, co-delivery of rMSC and BMP-2 to the femoral defect space attenuated bone repair in vivo compared to BMP-2 delivery alone. Overall, despite in vitro evidence to the contrary, the present study observed no beneficial effects of these delivery strategies on cell-based bone tissue repair.

4.
J Biomed Mater Res A ; 102(1): 234-46, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23873846

RESUMEN

Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors that contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explanation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. This study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Matriz Extracelular/química , Reacción a Cuerpo Extraño/metabolismo , Reacción a Cuerpo Extraño/patología , Ensayo de Materiales , Polipropilenos/química , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Mallas Quirúrgicas
5.
J Stem Cells Regen Med ; 10(2): 38-48, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25705097

RESUMEN

Microencapsulating stem cells in injectable microbeads can enhance delivery and localization, but their ability to act as growth factor production sources is still unknown. To address this concern, growth factor mRNA levels and production from alginate microbeads with encapsulated human adipose stem cells (ASC microbeads) cultured in both growth and chondrogenic media (GM and CM) were measured over a two week period. Human ASCs in microbeads were either commercially purchased (Lonza) or isolated from six human donors and compared to human ASCs on tissue culture polystyrene (TCPS). The effects of crosslinking and alginate compositions on growth factor mRNA levels and production were also determined. Secretion profiles of IGF-I, TGF-ß3 and VEGF-A from commercial human ASC microbeads were linear and at a significantly higher rate than TCPS cultures over two weeks. For human ASCs derived from different donors, microencapsulation increased pthlh and both IGF-I and TGF-ß3 secretion. CM decreased fgf2 and VEGF-A secretion from ASC microbeads derived from the same donor population. Crosslinking microbeads in BaCl2 instead of CaCl2 did not eliminate microencapsulation's beneficial effects, but did decrease IGF-I production. Increasing the guluronate content of the alginate microbead increased IGF-I retention. Decreasing alginate molecular weight eliminated the effects microencapsulation had on increasing IGF-I secretion. This study demonstrated that microencapsulation can enhance chondrogenic growth factor production and that chondrogenic medium treatment can decrease angiogenic growth factor production from ASCs, making these cells a potential source for paracrine factors that can stimulate cartilage regeneration.

6.
Tissue Eng Part A ; 19(11-12): 1451-64, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23350662

RESUMEN

Recent endeavors to use stem cells as trophic factor production sources have the potential to translate into viable therapies for damaged or diseased musculoskeletal tissues. Adipose stem cells (ASCs) can be differentiated into chondrocytes using the chondrogenic medium (CM), but it is unknown if this approach can optimize ASC growth factor secretion for cartilage regeneration by increasing the chondrogenic factor production, while decreasing angiogenic and hypertrophic factor production. The objective of this study was to determine the effects the CM and its components have on growth factor production from ASCs to promote cartilage regeneration. ASCs isolated from male Sprague-Dawley rats and cultured in monolayer or alginate microbeads were treated with either the growth medium (GM) or the CM for 5 days. In subsequent studies, ASC monolayers were treated with either the GM supplemented with different combinations of 50 µg/mL ascorbic acid-2-phosphate (AA2P), 100 nM dexamethasone (Dex), 10 ng/mL transforming growth factor (TGF)-ß1, and 100 ng/mL bone morphogenetic protein (BMP)-6 or with the CM excluding different combinations of AA2P, Dex, TGF-ß1, and BMP-6. mRNA levels and growth factor production were quantified at 8 and 24 h after the last media change, respectively. The CM increased chondrogenic factor secretion (TGF-ß2, TGF-ß3, and insulin-like growth factor [IGF]-I) and decreased angiogenic factor production (the vascular endothelial growth factor [VEGF]-A, the fibroblast growth factor [FGF]-2). Microencapsulation in the GM increased production of the chondrogenic (IGF-I, TGF-ß2) and angiogenic (VEGF-A) factors. AA2P increased secretion of chondrogenic factors (IGF-I, TGF-ß2), and decreased angiogenic factor (VEGF-A) secretion, in addition to decreasing mRNA levels for factors associated with chondrocyte hypertrophy (FGF-18). Dex increased mRNA levels for hypertrophic factors (BMP-2, FGF-18) and decreased angiogenic factor secretion (VEGF-A). TGF-ß1 increased angiogenic factor production (FGF-2, VEGF-A) and decreased chondrogenic factor mRNA levels (IGF-I, PTHrP). BMP-6 increased hypertrophic mRNA levels (FGF-18) and chondrogenic factor production (TGF-ß2). When ASC microbeads preconditioned with the CM were implanted in a focal cartilage defect and immobilized within an RGD-conjugated hydrogel, tissue infiltration from the edges of the defect and perichondrium was observed. These results show that differentiation media components have distinct effects on ASC's production of angiogenic, chondrogenic, and hypertrophic factors and that AA2P may be the most beneficial CM component for preconditioning ASCs to stimulate cartilage regeneration.


Asunto(s)
Tejido Adiposo/citología , Cartílago/patología , Diferenciación Celular/efectos de los fármacos , Condrocitos/patología , Medios de Cultivo/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Regeneración/efectos de los fármacos , Células Madre/metabolismo , Animales , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacología , Proteína Morfogenética Ósea 6/farmacología , Cartílago/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrogénesis/efectos de los fármacos , Dexametasona/farmacología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Microesferas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología
7.
Stem Cell Res Ther ; 3(4): 35, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22920724

RESUMEN

INTRODUCTION: Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. METHODS: ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. RESULTS: ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. CONCLUSIONS: ASCs must be treated to reduce the secretion of VEGF-A and other factors that inhibit cartilage regeneration, which can significantly influence how ASCs are used for repairing hyaline cartilage.


Asunto(s)
Tejido Adiposo/citología , Inductores de la Angiogénesis/metabolismo , Cartílago Hialino/fisiología , Células Madre/metabolismo , Animales , Enfermedades de los Cartílagos/diagnóstico por imagen , Enfermedades de los Cartílagos/patología , Enfermedades de los Cartílagos/terapia , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Cartílago Hialino/diagnóstico por imagen , Cartílago Hialino/patología , Masculino , Comunicación Paracrina , ARN Mensajero/metabolismo , Radiografía , Ratas , Ratas Sprague-Dawley , Regeneración , Trasplante de Células Madre , Células Madre/citología , Células Madre/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA