Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 10601, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606299

RESUMEN

Acoustic metamaterials constructed from conventional base materials can exhibit exotic phenomena not commonly found in nature, achieved by combining geometrical and resonance effects. However, the use of polymer-based metamaterials that could operate in water is difficult, due to the low acoustic impedance mismatch between water and polymers. Here we introduce the concept of "trapped air" metamaterial, fabricated via vat photopolymerization, which makes ultrasonic sub-wavelength imaging in water using polymeric metamaterials highly effective. This concept is demonstrated for a holey-structured acoustic metamaterial in water at 200-300 kHz, via both finite element modelling and experimental measurements, but it can be extended to other types of metamaterials. The new approach, which outperforms the usual designs of these structures, indicates a way forward for exploiting additive-manufacturing for realising polymer-based acoustic metamaterials in water at ultrasonic frequencies.

2.
Sensors (Basel) ; 20(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316414

RESUMEN

Experiments have been performed to demonstrate that ultrasound in the 100-400 kHz frequency range can be used to propagate signals through various types of industrial insulation. This is despite the fact that they are highly attenuating to ultrasonic signals due to scattering and viscoelastic effects. The experiments used a combination of piezocomposite transducers and pulse compression processing. This combination allowed signal-to-noise levels to be enhanced so that signals reflected from the surface of an insulated and cladded steel pipe could be obtained.

3.
Sensors (Basel) ; 19(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597266

RESUMEN

The use of different spectral bands in the inspection of artworks is highly recommended to identify the maximum number of defects/anomalies (i.e., the targets), whose presence ought to be known before any possible restoration action. Although an artwork cannot be considered as a composite material in which the zero-defect theory is usually followed by scientists, it is possible to state that the preservation of a multi-layered structure fabricated by the artist's hands is based on a methodological analysis, where the use of non-destructive testing methods is highly desirable. In this paper, the infrared thermography and hyperspectral imaging methods were applied to identify both fabricated and non-fabricated targets in a canvas painting mocking up the famous character "Venus" by Botticelli. The pulse-compression thermography technique was used to retrieve info about the inner structure of the sample and low power light-emitting diode (LED) chips, whose emission was modulated via a pseudo-noise sequence, were exploited as the heat source for minimizing the heat radiated on the sample surface. Hyper-spectral imaging was employed to detect surface and subsurface features such as pentimenti and facial contours. The results demonstrate how the application of statistical algorithms (i.e., principal component and independent component analyses) maximized the number of targets retrieved during the post-acquisition steps for both the employed techniques. Finally, the best results obtained by both techniques and post-processing methods were fused together, resulting in a clear targets map, in which both the surface, subsurface and deeper information are all shown at a glance.

4.
Sensors (Basel) ; 19(9)2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086005

RESUMEN

Ablative materials are used extensively in the aerospace industry for protection against high thermal stresses and temperatures, an example being glass/silicone composites. The extreme conditions faced and the cost-risk related to the production/operating stage of such high-tech materials indicate the importance of detecting any anomaly or defect arising from the manufacturing process. In this paper, two different non-destructive testing techniques, namely active thermography and ultrasonic testing, have been used to detect a delamination in a glass/silicone composite. It is shown that a frequency modulated chirp signal and pulse-compression can successfully be used in active thermography for detecting such a delamination. Moreover, the same type of input signal and post-processing can be used to generate an image using air-coupled ultrasound, and an interesting comparison between the two can be made to further characterise the defect.

5.
Ultrasonics ; 54(7): 1745-59, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24726137

RESUMEN

This paper investigates various types of coded waveforms that could be used for air-coupled ultrasound, using a pulse compression approach to signal processing. These are needed because of the low signal-to-noise ratios that are found in many air-coupled ultrasonic nondestructive evaluation measurements, due to the large acoustic mismatch between air and many solid materials. The various waveforms, including both swept-frequency signals and those with binary modulation, are described, and their performance in the presence of noise is compared. It is shown that the optimum choice of modulation signal depends on the bandwidth available and the type of measurement being made.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA