Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Psychiatry ; 14: 1249578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928922

RESUMEN

Autism Spectrum Disorder (ASD or autism) is a phenotypically and etiologically heterogeneous condition. Identifying biomarkers of clinically significant metabolic subtypes of autism could improve understanding of its underlying pathophysiology and potentially lead to more targeted interventions. We hypothesized that the application of metabolite-based biomarker techniques using decision thresholds derived from quantitative measurements could identify autism-associated subpopulations. Metabolomic profiling was carried out in a case-control study of 499 autistic and 209 typically developing (TYP) children, ages 18-48 months, enrolled in the Children's Autism Metabolome Project (CAMP; ClinicalTrials.gov Identifier: NCT02548442). Fifty-four metabolites, associated with amino acid, organic acid, acylcarnitine and purine metabolism as well as microbiome-associated metabolites, were quantified using liquid chromatography-tandem mass spectrometry. Using quantitative thresholds, the concentrations of 4 metabolites and 149 ratios of metabolites were identified as biomarkers, each identifying subpopulations of 4.5-11% of the CAMP autistic population. A subset of 42 biomarkers could identify CAMP autistic individuals with 72% sensitivity and 90% specificity. Many participants were identified by several metabolic biomarkers. Using hierarchical clustering, 30 clusters of biomarkers were created based on participants' biomarker profiles. Metabolic changes associated with the clusters suggest that altered regulation of cellular metabolism, especially of mitochondrial bioenergetics, were common metabolic phenotypes in this cohort of autistic participants. Autism severity and cognitive and developmental impairment were associated with increased lactate, many lactate containing ratios, and the number of biomarker clusters a participant displayed. These studies provide evidence that metabolic phenotyping is feasible and that defined autistic subgroups can lead to enhanced understanding of the underlying pathophysiology and potentially suggest pathways for targeted metabolic treatments.

2.
Arch Toxicol ; 96(7): 2033-2047, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35488128

RESUMEN

Identification of early biomarkers of heart injury and drug-induced cardiotoxicity is important to eliminate harmful drug candidates early in preclinical development and to prevent severe drug effects. The main objective of this study was to investigate the expression of microRNAs (miRNAs) in human-induced pluripotent stem cell cardiomyocytes (hiPSC-CM) in response to a broad range of cardiotoxic drugs. Next generation sequencing was applied to hiPSC-CM treated for 72 h with 40 drugs falling into the categories of functional (i.e., ion channel blockers), structural (changes in cardiomyocytes structure), and general (causing both functional and structural) cardiotoxicants as well as non-cardiotoxic drugs. The largest changes in miRNAs expression were observed after treatments with structural or general cardiotoxicants. The number of deregulated miRNAs was the highest for idarubicin, mitoxantrone, and bortezomib treatments. RT-qPCR validation confirmed upregulation of several miRNAs across multiple treatments at therapeutically relevant concentrations: hsa-miR-187-3p, hsa-miR-146b-5p, hsa-miR-182-5p (anthracyclines); hsa-miR-365a-5p, hsa-miR-185-3p, hsa-miR-184, hsa-miR-182-5p (kinase inhibitors); hsa-miR-182-5p, hsa-miR-126-3p and hsa-miR-96-5p (common some anthracyclines, kinase inhibitors and bortezomib). Further investigations showed that an upregulation of hsa-miR-187-3p and hsa-miR-182-5p could serve as a potential biomarker of structural cardiotoxicity and/or an additional endpoint to characterize cardiac injury in vitro.


Asunto(s)
Cardiotoxicidad , Células Madre Pluripotentes Inducidas , MicroARNs , Miocitos Cardíacos , Antraciclinas/efectos adversos , Biomarcadores , Bortezomib/efectos adversos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
3.
Autism Res ; 13(8): 1270-1285, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32558271

RESUMEN

Autism spectrum disorder (ASD) is biologically and behaviorally heterogeneous. Delayed diagnosis of ASD is common and problematic. The complexity of ASD and the low sensitivity of available screening tools are key factors in delayed diagnosis. Identification of biomarkers that reduce complexity through stratification into reliable subpopulations can assist in earlier diagnosis, provide insight into the biology of ASD, and potentially suggest targeted interventions. Quantitative metabolomic analysis was performed on plasma samples from 708 fasting children, aged 18 to 48 months, enrolled in the Children's Autism Metabolome Project (CAMP). The primary goal was to identify alterations in metabolism helpful in stratifying ASD subjects into subpopulations with shared metabolic phenotypes (i.e., metabotypes). Metabotypes associated with ASD were identified in a discovery set of 357 subjects. The reproducibility of the metabotypes was validated in an independent replication set of 351 CAMP subjects. Thirty-four candidate metabotypes that differentiated subsets of ASD from typically developing participants were identified with sensitivity of at least 5% and specificity greater than 95%. The 34 metabotypes formed six metabolic clusters based on ratios of either lactate or pyruvate, succinate, glycine, ornithine, 4-hydroxyproline, or α-ketoglutarate with other metabolites. Optimization of a subset of new and previously defined metabotypes into a screening battery resulted in 53% sensitivity (95% confidence interval [CI], 48%-57%) and 91% specificity (95% CI, 86%-94%). Thus, our metabolomic screening tool detects more than 50% of the autistic participants in the CAMP study. Further development of this metabolomic screening approach may facilitate earlier referral and diagnosis of ASD and, ultimately, more targeted treatments. LAY SUMMARY: Analysis of a selected set of metabolites in blood samples from children with autism and typically developing children identified reproducible differences in the metabolism of about half of the children with autism. Testing for these differences in blood samples can be used to help screen children as young as 18 months for risk of autism that, in turn, can facilitate earlier diagnoses. In addition, differences may lead to biological insights that produce more precise treatment options. We are exploring other blood-based molecules to determine if still a higher percentage of children with autism can be detected using this strategy. Autism Res 2020, 13: 1270-1285. © 2020 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals LLC.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/epidemiología , Metabolómica/métodos , Biomarcadores/sangre , Preescolar , Diagnóstico Precoz , Glicina , Humanos , Lactante , Masculino , Tamizaje Masivo/métodos , Metaboloma , Reproducibilidad de los Resultados , Riesgo
4.
Toxicol Sci ; 174(2): 218-240, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040181

RESUMEN

Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.


Asunto(s)
Descubrimiento de Drogas , Cardiopatías/inducido químicamente , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Metaboloma , Metabolómica , Miocitos Cardíacos/efectos de los fármacos , Xenobióticos/toxicidad , Biomarcadores/metabolismo , Cardiotoxicidad , Línea Celular , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Estructura Molecular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Medición de Riesgo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem , Xenobióticos/química
6.
Biol Psychiatry ; 85(4): 345-354, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30446206

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is behaviorally and biologically heterogeneous and likely represents a series of conditions arising from different underlying genetic, metabolic, and environmental factors. There are currently no reliable diagnostic biomarkers for ASD. Based on evidence that dysregulation of branched-chain amino acids (BCAAs) may contribute to the behavioral characteristics of ASD, we tested whether dysregulation of amino acids (AAs) was a pervasive phenomenon in individuals with ASD. This is the first article to report results from the Children's Autism Metabolome Project (CAMP), a large-scale effort to define autism biomarkers based on metabolomic analyses of blood samples from young children. METHODS: Dysregulation of AA metabolism was identified by comparing plasma metabolites from 516 children with ASD with those from 164 age-matched typically developing children recruited into the CAMP. ASD subjects were stratified into subpopulations based on shared metabolic phenotypes associated with BCAA dysregulation. RESULTS: We identified groups of AAs with positive correlations that were, as a group, negatively correlated with BCAA levels in ASD. Imbalances between these two groups of AAs identified three ASD-associated amino acid dysregulation metabotypes. The combination of glutamine, glycine, and ornithine amino acid dysregulation metabotypes identified a dysregulation in AA/BCAA metabolism that is present in 16.7% of the CAMP subjects with ASD and is detectable with a specificity of 96.3% and a positive predictive value of 93.5% within the ASD subject cohort. CONCLUSIONS: Identification and utilization of metabotypes of ASD can lead to actionable metabolic tests that support early diagnosis and stratification for targeted therapeutic interventions.


Asunto(s)
Trastorno del Espectro Autista/sangre , Glutamina/sangre , Glicina/sangre , Ornitina/sangre , Trastorno del Espectro Autista/clasificación , Trastorno del Espectro Autista/diagnóstico , Biomarcadores/sangre , Estudios de Casos y Controles , Preescolar , Biología Computacional , Femenino , Humanos , Lactante , Masculino , Metabolómica , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
7.
Nat Biotechnol ; 36(9): 791-797, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30188545
8.
Reprod Toxicol ; 73: 350-361, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28746836

RESUMEN

The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism.


Asunto(s)
Cistina/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Receptor alfa de Ácido Retinoico/metabolismo , Retinoides/farmacología , Bioensayo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ornitina/metabolismo
9.
PLoS One ; 9(11): e112445, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25380056

RESUMEN

BACKGROUND: The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age. OBJECTIVES: To discover metabolic features present in plasma samples that can discriminate children with ASD from typically developing (TD) children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in larger clinical trials and deployed to guide individualized therapy and treatment. METHODS: Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites. Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features that could distinguish ASD from TD. RESULTS: A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling. Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set. CONCLUSIONS: This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1) determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2) gaining new insight into the biochemical mechanisms of various subtypes of ASD 3) identifying biomolecular targets for new modes of therapy, and 4) providing the basis for individualized treatment recommendations.


Asunto(s)
Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/diagnóstico , Biomarcadores/sangre , Metabolómica/métodos , Trastorno del Espectro Autista/metabolismo , Niño , Preescolar , Cromatografía Liquida , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Aprendizaje Automático , Masculino , Espectrometría de Masas , Análisis Multivariante , Medicina de Precisión/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Birth Defects Res B Dev Reprod Toxicol ; 98(4): 343-63, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24123775

RESUMEN

A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study, metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites, along with a cytotoxicity endpoint, was then developed using a 9-point dose-response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity, an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy, but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity, 100% specificity). The assay had a high concordance (≥75%) with existing in vivo models, demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.


Asunto(s)
Bioensayo/métodos , Biomarcadores/metabolismo , Células Madre Embrionarias/metabolismo , Pruebas de Toxicidad/métodos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Femenino , Humanos , Metabolómica , Modelos Biológicos , Embarazo , Teratógenos/toxicidad
11.
Mol Aspects Med ; 34(2-3): 95-107, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23506860

RESUMEN

The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and "non-SLC" transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives.


Asunto(s)
Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Modelos Moleculares , Familia de Multigenes/genética , Conformación Proteica , Humanos , Proteínas de Transporte de Membrana/metabolismo , Terminología como Asunto , Vitaminas/metabolismo
12.
Mol Aspects Med ; 34(2-3): 436-54, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23506882

RESUMEN

Transporters for vitamin C and its oxidized form dehydroascorbic acid (DHA) are crucial to maintain physiological concentrations of this important vitamin that is used in a variety of biochemical processes. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (encoded by the SLC23A1 gene) and SVCT2 (SLC23A2) as well as an orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter (NAT) family, although no nucleobase transport has yet been demonstrated for the human members of this family. The SVCT1 and SVCT2 transporters are rather specific for ascorbic acid, which is an important antioxidant and plays a crucial role in a many metal-containing enzymes. SVCT1 is expressed predominantly in epithelial tissues such as intestine where it contributes to the supply and maintenance of whole-body ascorbic acid levels. In contrast to various other mammals, humans are not capable of synthesizing ascorbic acid from glucose and therefore the uptake of ascorbic acid from the diet via SVCT1 is essential for maintaining appropriate concentrations of vitamin C in the human body. The expression of SVCT2 is relatively widespread, where it serves to either deliver ascorbic acid to tissues with high demand of the vitamin for enzymatic reactions or to protect metabolically highly active cells or specialized tissues from oxidative stress. The murine Slc23a3 gene encoding the orphan transporter SVCT3 was originally cloned from mouse yolk sac, and subsequent studies showed that it is expressed in the kidney. However, the function of SVCT3 has not been reported and it remains speculative as to whether SVCT3 is a nucleobase transporter.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Modelos Moleculares , Familia de Multigenes/genética , Conformación Proteica , Transportadores de Sodio Acoplados a la Vitamina C/genética , Transportadores de Sodio Acoplados a la Vitamina C/fisiología , Secuencia de Aminoácidos , Animales , Ácido Ascórbico/metabolismo , Clonación Molecular , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Ratas , Alineación de Secuencia , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo , Especificidad de la Especie
13.
ALTEX ; 29(1): 3-91, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22307314

RESUMEN

Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new products (such as nanoparticles or cell therapies), the limited predictivity of traditional tests for human health effects, duration and costs of current approaches, and animal welfare considerations. The latter holds especially true in the context of the scheduled 2013 marketing ban on cosmetic ingredients tested for systemic toxicity. Based on a major analysis of the status of alternative methods (Adler et al., 2011) and its independent review (Hartung et al., 2011), the present report proposes a roadmap for how to overcome the acknowledged scientific gaps for the full replacement of systemic toxicity testing using animals. Five whitepapers were commissioned addressing toxicokinetics, skin sensitization, repeated-dose toxicity, carcinogenicity, and reproductive toxicity testing. An expert workshop of 35 participants from Europe and the US discussed and refined these whitepapers, which were subsequently compiled to form the present report. By prioritizing the many options to move the field forward, the expert group hopes to advance regulatory science.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Cosméticos/efectos adversos , Pruebas de Toxicidad/ética , Pruebas de Toxicidad/métodos , Experimentación Animal/legislación & jurisprudencia , Experimentación Animal/normas , Alternativas a las Pruebas en Animales/ética , Bienestar del Animal/legislación & jurisprudencia , Bienestar del Animal/normas , Europa (Continente) , Legislación de Medicamentos
14.
Mol Cancer Ther ; 5(2): 219-29, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16505094

RESUMEN

Protein tyrosine phosphatase PRL-3 mRNA was found highly expressed in colon cancer endothelium and metastases. We sought to associate a function with PRL-3 expression in both endothelial cells and malignant cells using in vitro models. PRL-3 mRNA levels were determined in several normal human endothelial cells exposed or unexposed to the phorbol ester phorbol 12-myristate 13-acetate (PMA) and in 27 human tumor cell lines. In endothelial cells, PRL-3 mRNA expression was increased in human umbilical vascular endothelial cells and human microvascular endothelial cells (HMVEC) exposed to PMA. An oligonucleotide microarray analysis revealed that PRL-3 was among the 10 genes with the largest increase in expression on PMA stimulation. Phenotypically, PMA-treated HMVEC showed increased invasion, tube formation, and growth factor-stimulated proliferation. A flow cytometric analysis of cell surface markers showed that PMA-treated HMVEC retained endothelial characteristics. Infection of HMVEC with an adenovirus expressing PRL-3 resulted in increased tube formation. In tumor cells, PRL-3 mRNA levels varied markedly with high expression in SKNAS neuroblastoma, MCF-7 and BT474 breast carcinoma, Hep3B hepatocellular carcinoma, and HCT116 colon carcinoma. Western blotting analysis of a subset of cell line lysates showed a positive correlation between PRL-3 mRNA and protein levels. PRL-3 was stably transfected into DLD-1 colon cancer cells. PRL-3-overexpressing DLD-1 subclones were assessed for doubling time and invasion. Although doubling time was similar among parental, empty vector, and PRL-3 subclones, invasion was increased in PRL-3-expressing subclones. In models of endogenous expression, we observed that the MCF-7 cell line, which expresses high levels of PRL-3, was more invasive than the SKBR3 cell line, which expresses low levels of PRL-3. However, the MDA-MB-231 cell line was highly invasive with low levels of PRL-3, suggesting that in some models invasion is PRL-3 independent. Transfection of a PRL-3 small interfering RNA into MCF-7 cells inhibited PRL-3 expression and cell invasion. These results indicate that PRL-3 is functional in both endothelial cells and malignant cells and further validate PRL-3 as a potentially important molecular target for anticancer therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias/genética , Neoplasias/enzimología , Proteínas y Péptidos Salivales/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Proteínas y Péptidos Salivales/análisis , Acetato de Tetradecanoilforbol/farmacología , Regulación hacia Arriba
15.
Biophys J ; 87(1): 534-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15240486

RESUMEN

Tolevamer, (GT160-246), is a sodium salt of styrene sulfonate polymer that is under development for the treatment of diarrhea caused by infection with Clostridium difficile. Pulsed ultrafiltration binding experiments in phosphate buffer containing 0.15 M Na(+) provide per polymer chain dissociation constants of 133 nM and 8.7 microM for the binding of tolevamer to C. difficile toxins A and B, respectively. At 0.05 M Na(+), the binding of toxin A to tolevamer is irreversible, whereas the dissociation constant to toxin B under these conditions is 120 nM. Binding constants obtained from fluorescence polarization data for toxin A binding to tolevamer at 0.15 M Na(+) agree substantially with those obtained by pulsed ultrafiltration. The binding activity of tolevamer reported here correlates well with previously reported results for the inhibition of the biological activity of C. difficile toxins A and B. From the fluorescence polarization data, it is estimated that one toxin A molecule interacts with between 600 to 1000 monomer units on tolevamer at 0.15 M Na(+). Thus, the data suggest a very large interaction surface between polymer and toxin A.


Asunto(s)
Toxinas Bacterianas/química , Clostridioides difficile/química , Polarización de Fluorescencia/métodos , Iones/química , Polímeros/química , Interacciones Farmacológicas , Ácidos Sulfónicos , Ultrafiltración/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...