Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 5(3): e235-e246, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38286131

RESUMEN

BACKGROUND: Prolonged SARS-CoV-2 infections in people who are immunocompromised might predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection have not been systematically investigated. We aimed to assess risk factors for prolonged SARS-CoV-2 infection and associated intrahost evolution. METHODS: In this multicentre, prospective analysis, participants were enrolled at five US medical centres. Eligible patients were aged 18 years or older, were SARS-CoV-2-positive in the previous 14 days, and had a moderately or severely immunocompromising condition or treatment. Nasal specimens were tested by real-time RT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. FINDINGS: From April 11, 2022, to Oct 1, 2022, 156 patients began the enrolment process, of whom 150 were enrolled and included in the analyses. Participants had B-cell malignancy or anti-B-cell therapy (n=18), solid organ transplantation or haematopoietic stem-cell transplantation (HSCT; n=59), AIDS (n=5), non-B-cell malignancy (n=23), and autoimmune or autoinflammatory conditions (n=45). 38 (25%) participants were real-time RT-PCR-positive and 12 (8%) were culture-positive 21 days or longer after initial SARS-CoV-2 detection or illness onset. Compared with the group with autoimmune or autoinflammatory conditions, patients with B-cell dysfunction (adjusted hazard ratio 0·32 [95% CI 0·15-0·64]), solid organ transplantation or HSCT (0·60 [0·38-0·94]), and AIDS (0·28 [0·08-1·00]) had longer duration of infection, defined as time to last positive real-time RT-PCR test. There was no significant difference in the non-B-cell malignancy group (0·58 [0·31-1·09]). Consensus de novo spike mutations were identified in five individuals who were real-time RT-PCR-positive longer than 56 days; 14 (61%) of 23 were in the receptor-binding domain. Mutations shared by multiple individuals were rare (<5%) in global circulation. INTERPRETATION: In this cohort, prolonged replication-competent omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting longer than 56 days accumulated spike mutations, which were distinct from those seen globally. Populations at high risk should be targeted for repeated testing and treatment and monitored for the emergence of antiviral resistance. FUNDING: US Centers for Disease Control and Prevention.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , COVID-19 , Neoplasias , Humanos , Linfocitos B , COVID-19/epidemiología , SARS-CoV-2/genética , Estados Unidos/epidemiología , Estudios Prospectivos
2.
medRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662226

RESUMEN

Background: Prolonged SARS-CoV-2 infections in immunocompromised hosts may predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection and associated intrahost viral evolution remain unclear. Methods: Adults aged ≥18 years were enrolled at 5 hospitals and followed from 4/11/2022 - 2/1/2023. Eligible patients were SARS-CoV-2-positive in the previous 14 days and had a moderate or severely immunocompromising condition or treatment. Nasal specimens were tested by rRT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. Results: We enrolled 150 patients with: B cell malignancy or anti-B cell therapy (n=18), solid organ or hematopoietic stem cell transplant (SOT/HSCT) (n=59), AIDS (n=5), non-B cell malignancy (n=23), and autoimmune/autoinflammatory conditions (n=45). Thirty-eight (25%) were rRT-PCR-positive and 12 (8%) were culture-positive ≥21 days after initial SARS-CoV-2 detection or illness onset. Patients with B cell dysfunction had longer duration of rRT-PCR-positivity compared to those with autoimmune/autoinflammatory conditions (aHR 0.32, 95% CI 0.15-0.64). Consensus (>50% frequency) spike mutations were identified in 5 individuals who were rRT-PCR-positive >56 days; 61% were in the receptor-binding domain (RBD). Mutations shared by multiple individuals were rare (<5%) in global circulation. Conclusions: In this cohort, prolonged replication-competent Omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting >56 days accumulated spike mutations, which were distinct from those seen globally.

3.
Nat Commun ; 13(1): 4350, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896523

RESUMEN

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pruebas de Neutralización , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
4.
Vaccine ; 38(33): 5171-5177, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32580919

RESUMEN

BACKGROUND: Current influenza vaccine effectiveness (VE) improvement efforts focus on minimizing egg adaptation mutations during manufacture. This study compared immune response of two FDA-approved quadrivalent inactivated influenza vaccines in an unblinded randomized controlled trial. METHODS: Participants were 144 community dwelling, healthy children/adolescents aged 4-20 years, randomized 1:1 in blocks of 4 to a vaccine grown in cell culture (ccIIV4 [Flucelvax®]; n = 85); or in egg medium (IIV4 [Fluzone ®]; n = 83). Blood was drawn at day 0 prevaccination and at day 28 (19-35 days) post vaccination. Hemagglutination inhibition (HI) assays against A/H1N1 and both B strains and microneutralization (MN) assays against egg-based and cell-based A/H3N2 strains were conducted. The primary outcome measure was seroconversion (day 28/day 0 titer ratio ≥ 4 with day 28 titer ≥ 40). Secondary outcomes were elevated titers (day 28 HI titer ≥ 1:110), geometric mean titers (GMTs) and mean fold rise (MFR) in titers. Outcomes were compared for 74 ccIIV4 recipients and 70 IIV4 recipients, and for those vaccinated and unvaccinated the previous year. Only the HI and MN laboratory analysis team was blinded to group assignment. RESULTS: In this racially diverse (81% non-white) group of children with a median age of 14 years, baseline demographics did not differ between vaccine groups. At day 0, half or more in each vaccine group had elevated HI or MN titers. Low seroconversion rates (14%-35%) were found; they did not differ between groups. Among 2018-19 ccIIV4 recipients, those unvaccinated in the previous season showed significantly higher MFR against A/H1N1 and A/H3N2 cell-grown virus than the previously vaccinated. Similar results were found for MFR against B/Victoria among 2018-2019 IIV4 recipients. CONCLUSION: In mostly older children with high baseline titers, no differences in seroconversion or other measures of antibody titers were found between ccIIV4 and IIV4 recipients against egg- and cell-grown influenza vaccine viruses. CLINICAL TRIALS NO: NCT03614975.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Anticuerpos Antivirales , Formación de Anticuerpos , Niño , Preescolar , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Gripe Humana/prevención & control , Vacunas de Productos Inactivados , Adulto Joven
5.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768855

RESUMEN

Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines.IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody titers measured by hemagglutination inhibition (HI) and virus microneutralization (MN) assays. Since H7 vaccines typically induce low titers in HI and MN assays, they have been considered to be poorly immunogenic. We show that in mice H7 whole inactivated virus vaccines (WIVs) were as immunogenic as seasonal WIVs, as they induced similar levels of overall serum antibodies. However, a larger fraction of the antibodies induced by H7 WIV was nonneutralizing in vitro Nevertheless, the H7 WIV completely protected mice against homologous viral challenge, and antibodies directed against the HA head were the major contributor toward immune protection. Vaccines against H7 avian influenza viruses may be more effective than HI and virus neutralization assays suggest, and such vaccines may need other methods for evaluation.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Antivirales/biosíntesis , Ensayo de Inmunoadsorción Enzimática , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H7N2 del Virus de la Influenza A/genética , Subtipo H7N2 del Virus de la Influenza A/inmunología , Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Ratones , Neuraminidasa/genética , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Genética Inversa , Vacunación , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
6.
J Immunol ; 185(7): 4101-8, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20817872

RESUMEN

The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microflora can affect a population of Foxp3(+)T(reg) cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that Bacteroides fragilis producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type B. fragilis maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient B. fragilis restored EAE susceptibility. Enhanced numbers of Foxp3(+)T(reg) cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of B. fragilis. Ex vivo, CD4(+)T cells obtained from mice reconstituted with wild type B. fragilis had significantly enhanced rates of conversion into IL-10-producing Foxp3(+)T(reg) cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular B. fragilis expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis.


Asunto(s)
Antígenos Bacterianos/inmunología , Cápsulas Bacterianas/inmunología , Bacteroides fragilis/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Mucosa Intestinal/microbiología , Animales , Separación Celular , Encefalomielitis Autoinmune Experimental/microbiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Immunol ; 183(10): 6041-50, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19841183

RESUMEN

Mucosal tolerance has been considered a potentially important pathway for the treatment of autoimmune disease, including human multiple sclerosis and experimental conditions such as experimental autoimmune encephalomyelitis (EAE). There is limited information on the capacity of commensal gut bacteria to induce and maintain peripheral immune tolerance. Inbred SJL and C57BL/6 mice were treated orally with a broad spectrum of antibiotics to reduce gut microflora. Reduction of gut commensal bacteria impaired the development of EAE. Intraperitoneal antibiotic-treated mice showed no significant decline in the gut microflora and developed EAE similar to untreated mice, suggesting that reduction in disease activity was related to alterations in the gut bacterial population. Protection was associated with a reduction of proinflammatory cytokines and increases in IL-10 and IL-13. Adoptive transfer of low numbers of IL-10-producing CD25(+)CD4(+) T cells (>75% FoxP3(+)) purified from cervical lymph nodes of commensal bacteria reduced mice and in vivo neutralization of CD25(+) cells suggested the role of regulatory T cells maintaining peripheral immune homeostasis. Our data demonstrate that antibiotic modification of gut commensal bacteria can modulate peripheral immune tolerance that can protect against EAE. This approach may offer a new therapeutic paradigm in the treatment of multiple sclerosis and perhaps other autoimmune conditions.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/prevención & control , Intestinos/microbiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Administración Oral , Traslado Adoptivo , Animales , Antibacterianos/administración & dosificación , Bacterias/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/microbiología , Femenino , Glicoproteínas/farmacología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Interleucina-13/inmunología , Interleucina-13/metabolismo , Intestinos/efectos de los fármacos , Intestinos/inmunología , Ratones , Ratones Endogámicos C57BL , Proteína Proteolipídica de la Mielina/farmacología , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos/farmacología
8.
J Leukoc Biol ; 85(5): 877-85, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19176402

RESUMEN

The immunity-related GTPases (IRG), also known as p47 GTPases, are a family of proteins that are tightly regulated by IFNs at the transcriptional level and serve as key mediators of IFN-regulated resistance to intracellular bacteria and protozoa. Among the IRG proteins, loss of Irgm1 has the most profound impact on IFN-gamma-induced host resistance at the physiological level. Surprisingly, the losses of host resistance seen in the absence of Irgm1 are sometimes more striking than those seen in the absence of IFN-gamma. In the current work, we address the underlying mechanism. We find that in several contexts, another protein in the IRG family, Irgm3, functions to counter the effects of Irgm1. By creating mice that lack Irgm1 and Irgm3, we show that several phenotypes important to host resistance that are caused by Irgm1 deficiency are reversed by coincident Irgm3 deficiency; these include resistance to Salmonella typhimurium in vivo, the ability to affect IFN-gamma-induced Salmonella killing in isolated macrophages, and the ability to regulate macrophage adhesion and motility in vitro. Other phenotypes that are caused by Irgm1 deficiency, including susceptibility to Toxoplasma gondii and the regulation of GKS IRG protein expression and localization, are not reversed but exacerbated when Irgm3 is also absent. These data suggest that members of the Irgm subfamily within the larger IRG family possess activities that can be opposing or cooperative depending on the context, and it is the balance of these activities that is pivotal in mediating IFN-gamma-regulated host resistance.


Asunto(s)
Proteínas de Unión al GTP/inmunología , Interferón gamma/inmunología , Macrófagos/inmunología , Salmonelosis Animal/inmunología , Toxoplasmosis Animal/inmunología , Animales , Adhesión Celular/inmunología , Células Cultivadas , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Inmunidad Innata , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Salmonella typhimurium/inmunología , Bazo/patología , Toxoplasma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...