Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(8): e0201826, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30086165

RESUMEN

Gelsolin is a severing and capping protein that targets filamentous actin and regulates filament lengths near plasma membranes, contributing to cell movement and plasma membrane morphology. Gelsolin binds to the plasma membrane via phosphatidylinositol 4,5-bisphosphate (PIP2) in a state that cannot cap F-actin, and gelsolin-capped actin filaments are uncapped by PIP2 leading to filament elongation. The process by which gelsolin is removed from PIP2 at the plasma membrane is currently unknown. Gelsolin also binds ATP with unknown function. Here we characterize the role of ATP on PIP2-gelsolin complex dynamics. Fluorophore-labeled PIP2 and ATP were used to study their interactions with gelsolin using steady-state fluorescence anisotropy, and Alexa488-labeled gelsolin was utilized to reconstitute the regulation of gelsolin binding to PIP2-containing phospholipid vesicles by ATP. Under physiological salt conditions ATP competes with PIP2 for binding to gelsolin, while calcium causes the release of ATP from gelsolin. These data suggest a cycle for gelsolin activity. Firstly, calcium activates ATP-bound gelsolin allowing it to sever and cap F-actin. Secondly, PIP2-binding removes the gelsolin cap from F-actin at low calcium levels, leading to filament elongation. Finally, ATP competes with PIP2 to release the calcium-free ATP-bound gelsolin, allowing it to undergo a further round of severing.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Gelsolina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Actinas/metabolismo , Animales , Unión Competitiva , Cationes/metabolismo , Membrana Celular/metabolismo , Escherichia coli , Humanos , Cinética , Magnesio/metabolismo , Polimerizacion , Unión Proteica , Conejos
2.
Hum Mol Genet ; 24(9): 2492-507, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25601851

RESUMEN

Hereditary gelsolin amyloidosis is an autosomal dominantly inherited amyloid disorder. A point mutation in the GSN gene (G654A being the most common one) results in disturbed calcium binding by the second gelsolin domain (G2). As a result, the folding of G2 is hampered, rendering the mutant plasma gelsolin susceptible to a proteolytic cascade. Consecutive cleavage by furin and MT1-MMP-like proteases generates 8 and 5 kDa amyloidogenic peptides that cause neurological, ophthalmological and dermatological findings. To this day, no specific treatment is available to counter the pathogenesis. Using GSN nanobody 11 as a molecular chaperone, we aimed to protect mutant plasma gelsolin from furin proteolysis in the trans-Golgi network. We report a transgenic, GSN nanobody 11 secreting mouse that was used for crossbreeding with gelsolin amyloidosis mice. Insertion of the therapeutic nanobody gene into the gelsolin amyloidosis mouse genome resulted in improved muscle contractility. X-ray crystal structure determination of the gelsolin G2:Nb11 complex revealed that Nb11 does not directly block the furin cleavage site. We conclude that nanobodies can be used to shield substrates from aberrant proteolysis and this approach might establish a novel therapeutic strategy in amyloid diseases.


Asunto(s)
Amiloide/metabolismo , Amiloidosis Familiar/metabolismo , Retículo Endoplásmico/metabolismo , Gelsolina/metabolismo , Anticuerpos de Dominio Único/farmacología , Amiloidosis Familiar/genética , Amiloidosis Familiar/fisiopatología , Animales , Modelos Animales de Enfermedad , Furina/metabolismo , Gelsolina/antagonistas & inhibidores , Gelsolina/química , Gelsolina/genética , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Contracción Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Mutación , Unión Proteica , Conformación Proteica , Proteolisis/efectos de los fármacos , Anticuerpos de Dominio Único/química , Red trans-Golgi/metabolismo
3.
Cell Rep ; 9(2): 618-32, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25310974

RESUMEN

Resolution of inflammation reduces pathological tissue destruction and restores tissue homeostasis. Here, we used a proteomic protease substrate discovery approach, terminal amine isotopic labeling of substrates (TAILS), to analyze the role of the macrophage-specific matrix metalloproteinase-12 (MMP12) in inflammation. In murine peritonitis, MMP12 inactivates antithrombin and activates prothrombin, prolonging the activated partial thromboplastin time. Furthermore, MMP12 inactivates complement C3 to reduce complement activation and inactivates the chemoattractant anaphylatoxins C3a and C5a, whereas iC3b and C3b opsonin cleavage increases phagocytosis. Loss of these anti-inflammatory activities in collagen-induced arthritis in Mmp12(-/-) mice leads to unresolved synovitis and extensive articular inflammation. Deep articular cartilage loss is associated with massive neutrophil infiltration and abnormal DNA neutrophil extracellular traps (NETs). The NETs are rich in fibrin and extracellular actin, which TAILS identified as MMP12 substrates. Thus, macrophage MMP12 in arthritis has multiple protective roles in countering neutrophil infiltration, clearing NETs, and dampening inflammatory pathways to prepare for the resolution of inflammation.


Asunto(s)
Artritis Experimental/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Infiltración Neutrófila , Neutrófilos/inmunología , Actinas/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Cartílago/patología , Línea Celular , Activación de Complemento , Complemento C3/inmunología , Trampas Extracelulares/metabolismo , Fibrina/metabolismo , Masculino , Metaloproteinasa 12 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Peritonitis/inmunología , Peritonitis/metabolismo , Protrombina/metabolismo
4.
Nat Commun ; 5: 4623, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25100107

RESUMEN

Force is increasingly recognized as an important element in controlling biological processes. Forces can deform native protein conformations leading to protein-specific effects. Protein-protein binding affinities may be decreased, or novel protein-protein interaction sites may be revealed, on mechanically stressing one or more components. Here we demonstrate that the calcium-binding affinity of the sixth domain of the actin-binding protein gelsolin (G6) can be enhanced by mechanical force. Our kinetic model suggests that the calcium-binding affinity of G6 increases exponentially with force, up to the point of G6 unfolding. This implies that gelsolin may be activated at lower calcium ion levels when subjected to tensile forces. The demonstration that cation-protein binding affinities can be force-dependent provides a new understanding of the complex behaviour of cation-regulated proteins in stressful cellular environments, such as those found in the cytoskeleton-rich leading edge and at cell adhesions.


Asunto(s)
Calcio/química , Cationes , Gelsolina/química , Actinas/química , Sitios de Unión , Biofisica , Adhesión Celular , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Proteínas de Microfilamentos/metabolismo , Microscopía de Fuerza Atómica , Unión Proteica , Desnaturalización Proteica , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Estrés Mecánico , Resistencia a la Tracción
5.
Cytoskeleton (Hoboken) ; 70(11): 775-95, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24155256

RESUMEN

The gelsolin homology (GH) domain has been found to date exclusively in actin-binding proteins. In humans, three copies of the domain are present in CapG, five copies in supervillin, and six copies each in adseverin, gelsolin, flightless I and the villins: villin, advillin and villin-like protein. Caenorhabditis elegans contains a four-GH-domain protein, GSNL-1. These architectures are predicted to have arisen from gene triplication followed by gene duplication to result in the six-domain protein. The subsequent loss of one, two or three domains produced the five-, four-, and three-domain proteins, respectively. Here we conducted BLAST and hidden Markov based searches of UniProt and NCBI databases to identify novel gelsolin domain containing proteins. The variety in architectures suggests that the GH domain has been tested in many molecular constructions during evolution. Of particular note is flightless-like I protein (FLIIL1) from Entamoeba histolytica, which combines a leucine rich repeats (LRR) domain, seven GH domains, and a headpiece domain, thus combining many of the features of flightless I with those of villin or supervillin. As such, the GH domain superfamily appears to have developed along complex routes. The distribution of these proteins was analyzed in the 343 completely sequenced genomes, mapped onto the tree of life, and phylogenetic trees of the proteins were constructed to gain insight into their evolution. © 2013 Wiley Periodicals, Inc.


Asunto(s)
Gelsolina/química , Familia de Multigenes , Homología de Secuencia de Aminoácido , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Genoma/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
6.
Cytoskeleton (Hoboken) ; 70(7): 360-84, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749648

RESUMEN

Gelsolin superfamily members are Ca(2+) -dependent, multidomain regulators of the actin cytoskeleton. Calcium binding activates gelsolin by inducing molecular gymnastics (large-scale conformational changes) that expose actin interaction surfaces by releasing a series of latches. A specialized tail latch has distinguished gelsolin within the superfamily. Active gelsolin exhibits actin filament severing and capping, and actin monomer sequestering activities. Here, we analyze a combination of sequence, structural, biophysical and biochemical data to assess whether the molecular plasticity, regulation and actin-related properties of gelsolin are also present in other superfamily members. We conclude that all members of the superfamily will be able to transition between a compact conformation and a more open form, and that most of these open forms will interact with actin. Supervillin, which lacks the severing domain 1 and the F-actin binding-site on domain 2, is the clear exception. Eight calcium-binding sites are absolutely conserved in gelsolin, adseverin, advillin and villin, and compromised to increasing degrees in CapG, villin-like protein, supervillin and flightless I. Advillin, villin and supervillin each contain a potential tail latch, which is absent from CapG, adseverin and flightless I, and ambiguous in villin-like protein. Thus, calcium regulation will vary across the superfamily. Potential novel isoforms of the superfamily suggest complex regulation at the gene, transcript and protein levels. We review animal, clinical and cellular data that illuminate how the regulation of molecular flexibility in gelsolin-like proteins permits cells to exploit the force generated from actin polymerization to drive processes such as cell movement in health and disease.


Asunto(s)
Gelsolina/química , Gelsolina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animales , Humanos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares
7.
Cytoskeleton (Hoboken) ; 67(7): 456-65, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20540085

RESUMEN

Heat shock proteins act as cytoplasmic chaperones to ensure correct protein folding and prevent protein aggregation. The presence of stoichiometric amounts of one such heat shock protein, Hsp27, in supersaturated solutions of unmodified G-actin leads to crystallization, in preference to polymerization, of the actin. Hsp27 is not evident in the resulting crystal structure. Thus, for the first time, we present the structure of G-actin in a form that is devoid of polymerization-deterring chemical modifications or binding partners, either of which may alter its conformation. The structure contains a calcium ion and ATP within a closed nucleotide-binding cleft, and the D-loop is disordered. This native G-actin structure invites comparison with the current F-actin model in order to understand the structural implications for actin polymerization. In particular, this analysis suggests a mechanism by which the bound cation coordinates conformational change and ATP-hydrolysis.


Asunto(s)
Actinas/química , Actinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Bioensayo , Cristalografía por Rayos X , Proteínas de Choque Térmico HSP27/farmacología , Magnesio/metabolismo , Espectrometría de Masas , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Conejos
8.
Proc Natl Acad Sci U S A ; 106(33): 13713-8, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666512

RESUMEN

Gelsolin consists of six homologous domains (G1-G6), each containing a conserved Ca-binding site. Occupation of a subset of these sites enables gelsolin to sever and cap actin filaments in a Ca-dependent manner. Here, we present the structures of Ca-free human gelsolin and of Ca-bound human G1-G3 in a complex with actin. These structures closely resemble those determined previously for equine gelsolin. However, the G2 Ca-binding site is occupied in the human G1-G3/actin structure, whereas it is vacant in the equine version. In-depth comparison of the Ca-free and Ca-activated, actin-bound human gelsolin structures suggests G2 and G6 to be cooperative in binding Ca(2+) and responsible for opening the G2-G6 latch to expose the F-actin-binding site on G2. Mutational analysis of the G2 and G6 Ca-binding sites demonstrates their interdependence in maintaining the compact structure in the absence of calcium. Examination of Ca binding by G2 in human G1-G3/actin reveals that the Ca(2+) locks the G2-G3 interface. Thermal denaturation studies of G2-G3 indicate that Ca binding stabilizes this fragment, driving it into the active conformation. The G2 Ca-binding site is mutated in gelsolin from familial amyloidosis (Finnish-type) patients. This disease initially proceeds through protease cleavage of G2, ultimately to produce a fragment that forms amyloid fibrils. The data presented here support a mechanism whereby the loss of Ca binding by G2 prolongs the lifetime of partially activated, intermediate conformations in which the protease cleavage site is exposed.


Asunto(s)
Calcio/química , Gelsolina/química , Actinas/química , Amiloide/química , Animales , Sitios de Unión , Análisis Mutacional de ADN , Activación Enzimática , Caballos , Humanos , Mutación , Péptido Hidrolasas/química , Unión Proteica , Conformación Proteica , Especificidad de la Especie
9.
Proc Natl Acad Sci U S A ; 106(33): 13719-24, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666531

RESUMEN

Adseverin is a member of the calcium-regulated gelsolin superfamily of actin severing and capping proteins. Adseverin comprises 6 homologous domains (A1-A6), which share 60% identity with the 6 domains from gelsolin (G1-G6). Adseverin is truncated in comparison to gelsolin, lacking the C-terminal extension that masks the F-actin binding site in calcium-free gelsolin. Biochemical assays have indicated differences in the interaction of the C-terminal halves of adseverin and gelsolin with actin. Gelsolin contacts actin through a major site on G4 and a minor site on G6, whereas adseverin uses a site on A5. Here, we present the X-ray structure of the activated C-terminal half of adseverin (A4-A6). This structure is highly similar to that of the activated form of the C-terminal half of gelsolin (G4-G6), both in arrangement of domains and in the 3 bound calcium ions. Comparative analysis of the actin-binding surfaces observed in the G4-G6/actin structure suggests that adseverin in this conformation will also be able to interact with actin through A4 and A6, whereas the A5 surface is obscured. A single residue mutation in A4-A6 located at the predicted A4/actin interface completely abrogates actin sequestration. A model of calcium-free adseverin, constructed from the structure of gelsolin, predicts that in the absence of a gelsolin-like C-terminal extension the interaction between A2 and A6 provides the steric inhibition to prevent interaction with F-actin. We propose that calcium binding to the N terminus of adseverin dominates the activation process to expose the F-actin binding site on A2.


Asunto(s)
Actinas/química , Gelsolina/química , Sitios de Unión , Calcio/química , Cristalografía por Rayos X/métodos , Humanos , Concentración de Iones de Hidrógeno , Iones , Microscopía Fluorescente/métodos , Conformación Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química
10.
J Biol Chem ; 284(32): 21265-9, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19491107

RESUMEN

Villin and gelsolin consist of six homologous domains of the gelsolin/cofilin fold (V1-V6 and G1-G6, respectively). Villin differs from gelsolin in possessing at its C terminus an unrelated seventh domain, the villin headpiece. Here, we present the crystal structure of villin domain V6 in an environment in which intact villin would be inactive, in the absence of bound Ca(2+) or phosphorylation. The structure of V6 more closely resembles that of the activated form of G6, which contains one bound Ca(2+), rather than that of the calcium ion-free form of G6 within intact inactive gelsolin. Strikingly apparent is that the long helix in V6 is straight, as found in the activated form of G6, as opposed to the kinked version in inactive gelsolin. Molecular dynamics calculations suggest that the preferable conformation for this helix in the isolated G6 domain is also straight in the absence of Ca(2+) and other gelsolin domains. However, the G6 helix bends in intact calcium ion-free gelsolin to allow interaction with G2 and G4. We suggest that a similar situation exists in villin. Within the intact protein, a bent V6 helix, when triggered by Ca(2+), straightens and helps push apart adjacent domains to expose actin-binding sites within the protein. The sixth domain in this superfamily of proteins serves as a keystone that locks together a compact ensemble of domains in an inactive state. Perturbing the keystone initiates reorganization of the structure to reveal previously buried actin-binding sites.


Asunto(s)
Actinas/química , Gelsolina/fisiología , Sitios de Unión , Calcio/metabolismo , Señalización del Calcio , Escherichia coli/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Humanos , Iones , Proteínas de Microfilamentos/química , Modelos Biológicos , Modelos Moleculares , Fosforilación , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
11.
J Mol Biol ; 365(5): 1469-79, 2007 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-17137591

RESUMEN

The Siglec family of receptors mediates cell-surface interactions through recognition of sialylated glycoconjugates. Previously reported structures of the N-terminal domain of the Siglec sialoadhesin (SnD1) in complex with various sialic acid analogs revealed the structural template for sialic acid binding. To characterize further the carbohydrate-binding properties, we have determined the crystal structures of SnD1 in the absence of ligand, and in complex with 2-benzyl-Neu5NPro and 2-benzyl-Neu5NAc. These structures reveal that SnD1 undergoes very few structural changes on ligand binding and detail how two novel classes of sialic acid analogs bind, one of which unexpectedly can induce Siglec dimerization. In conjunction with in silico analysis, this set of structures informs us about the design of putative ligands with enhanced binding affinities and specificities to different Siglecs, and provides data with which to test the effectiveness of different computational drug design protocols.


Asunto(s)
Biología Computacional , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Ácidos Siálicos/metabolismo , Algoritmos , Animales , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Secundaria de Proteína , Lectina 1 Similar a Ig de Unión al Ácido Siálico , Ácidos Siálicos/química
12.
J Mol Biol ; 357(3): 773-82, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16466744

RESUMEN

Gelsolin is a calcium and pH-sensitive modulator of actin filament length. Here, we use X-ray crystallography to examine the extraction and exchange of calcium ions from their binding sites in different crystalline forms of the activated N and C-terminal halves of gelsolin, G1-G3 and G4-G6, respectively. We demonstrate that the combination of calcium and low pH activating conditions do not induce conformational changes in G4-G6 beyond those elicited by calcium alone. EGTA is able to remove calcium ions bound to the type I and type II metal ion-binding sites in G4-G6. Constrained by crystal contacts and stabilized by interdomain interaction surfaces, the gross structure of calcium-depleted G4-G6 remains that of the activated form. However, high-resolution details of changes in the ion-binding sites may represent the initial steps toward restoration of the arrangement of domains found in the calcium-free inactive form of gelsolin in solution. Furthermore, bathing crystals with the trivalent calcium ion mimic, Tb3+, results in anomalous scattering data that permit unequivocal localization of terbium ions in each of the proposed type I and type II ion-binding sites of both halves of gelsolin. In contrast to predictions based on solution studies, we find that no calcium ion is immune to exchange.


Asunto(s)
Calcio/química , Calcio/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Actinas/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Cristalografía por Rayos X , Valor Predictivo de las Pruebas , Estructura Terciaria de Proteína
13.
J Mol Biol ; 357(3): 765-72, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16469333

RESUMEN

Calcium activation of the actin-modifying properties of gelsolin is sensitive to ATP. Here, we show that soaking calcium-free gelsolin crystals in ATP-containing media results in ATP occupying a site that spans the two pseudosymmetrical halves of the protein. ATP binding involves numerous polar and hydrophobic contacts and is identical for the two copies of gelsolin related by non-crystallographic symmetry within the crystal. The gamma-phosphate of ATP participates in several charge-charge interactions consistent with the preference of gelsolin for ATP, as a binding partner, over ADP. In addition, disruption of the ATP-binding site through Ca2+ activation of gelsolin reveals why ATP binds more tightly to the inactive molecule, and suggests how the binding of ATP may modulate the sensitivity of gelsolin to calcium ions. Similarities between the ATP and PIP2 interactions with the C-terminal half of gelsolin are evident from their overlapping binding sites and in that both molecules bind more tightly in the absence of calcium ions. We propose a model for how PIP2 may bind to calcium-free gelsolin based on the ATP-binding site.


Asunto(s)
Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Caballos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
14.
EMBO Rep ; 6(3): 220-6, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15741975

RESUMEN

Movement is a defining characteristic of life. Macroscopic motion is driven by the dynamic interactions of myosin with actin filaments in muscle. Directed polymerization of actin behind the advancing membrane of a eukaryotic cell generates microscopic movement. Despite the fundamental importance of actin in these processes, the structure of the actin filament remains unknown. The Holmes model of the actin filament was published 15 years ago, and although it has been widely accepted, no high-resolution structural data have yet confirmed its veracity. Here, we review the implications of recently determined structures of F-actin-binding proteins for the structure of the actin filament and suggest a series of in silico tests for actin-filament models. We also review the significance of these structures for the arp2/3-mediated branched filament.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Unión Proteica , Conformación Proteica
15.
EMBO J ; 23(18): 3599-608, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15329672

RESUMEN

The WH2 (Wiscott-Aldridge syndrome protein homology domain 2) repeat is an actin interacting motif found in monomer sequestering and filament assembly proteins. We have stabilized the prototypical WH2 family member, thymosin-beta4 (Tbeta4), with respect to actin, by creating a hybrid between gelsolin domain 1 and the C-terminal half of Tbeta4 (G1-Tbeta4). This hybrid protein sequesters actin monomers, severs actin filaments and acts as a leaky barbed end cap. Here, we present the structure of the G1-Tbeta4:actin complex at 2 A resolution. The structure reveals that Tbeta4 sequesters by capping both ends of the actin monomer, and that exchange of actin between Tbeta4 and profilin is mediated by a minor overlap in binding sites. The structure implies that multiple WH2 motif-containing proteins will associate longitudinally with actin filaments. Finally, we discuss the role of the WH2 motif in arp2/3 activation.


Asunto(s)
Actinas/química , Timosina/química , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Actinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas del Citoesqueleto/química , Citoesqueleto/metabolismo , Gelsolina/química , Gelsolina/genética , Gelsolina/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Timosina/metabolismo
16.
EMBO J ; 23(14): 2713-22, 2004 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-15215896

RESUMEN

The actin filament-severing functionality of gelsolin resides in its N-terminal three domains (G1-G3). We have determined the structure of this fragment in complex with an actin monomer. The structure reveals the dramatic domain rearrangements that activate G1-G3, which include the replacement of interdomain interactions observed in the inactive, calcium-free protein by new contacts to actin, and by a novel G2-G3 interface. Together, these conformational changes are critical for actin filament severing, and we suggest that their absence leads to the disease Finnish-type familial amyloidosis. Furthermore, we propose that association with actin drives the calcium-independent activation of isolated G1-G3 during apoptosis, and that a similar mechanism operates to activate native gelsolin at micromolar levels of calcium. This is the first structure of a filament-binding protein bound to actin and it sets stringent, high-resolution limitations on the arrangement of actin protomers within the filament.


Asunto(s)
Actinas/metabolismo , Amiloidosis Familiar/metabolismo , Apoptosis , Gelsolina/química , Gelsolina/metabolismo , Actinas/química , Animales , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Gelsolina/genética , Gelsolina/aislamiento & purificación , Caballos , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
17.
FEBS Lett ; 552(2-3): 82-5, 2003 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-14527664

RESUMEN

Gelsolin requires activation to carry out its severing and capping activities on F-actin. Here, we present the structure of the isolated C-terminal half of gelsolin (G4-G6) at 2.0 A resolution in the presence of Ca(2+) ions. This structure completes a triptych of the states of activation of G4-G6 that illuminates its role in the function of gelsolin. Activated G4-G6 displays an open conformation, with the actin-binding site on G4 fully exposed and all three type-2 Ca(2+) sites occupied. Neither actin nor the type-l Ca(2+), which normally is sandwiched between actin and G4, is required to achieve this conformation.


Asunto(s)
Actinas/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Conejos
18.
FEBS Lett ; 552(2-3): 86-90, 2003 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-14527665

RESUMEN

We present the 2.6 A resolution crystal structure of a complex formed between G-actin and gelsolin fragment Met25-Gln160 (G1+). The structure differs from those of other gelsolin domain 1 (G1) complexes in that an additional six amino acid residues from the crucial linker region into gelsolin domain 2 (G2) are visible and are attached securely to the surface of actin. The linker segment extends away from G1 up the face of actin in a direction that infers G2 will bind along the same long-pitch helical strand as the actin bound to G1. This is consistent with a mechanism whereby G2 attaches gelsolin to the side of a filament and then directs G1 toward a position where it would disrupt actin-actin contacts. Alignment of the sequence of the structurally important residues within the G1-G2 linker with those of WH2 (WASp homology domain 2) domain protein family members (e.g. WASp (Wiscott-Aldridge syndrome protein) and thymosin beta4) suggests that the opposing activities of filament assembly and disassembly may exploit a common patch on the surface of actin.


Asunto(s)
Actinas/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Sustancias Macromoleculares , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
J Mol Biol ; 324(4): 691-702, 2002 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-12460571

RESUMEN

Gelsolin participates in the reorganization of the actin cytoskeleton that is required during such phenomena as cell movement, cytokinesis, and apoptosis. It consists of six structurally similar domains, G1-G6, which are arranged at resting intracellular levels of calcium ion so as to obscure the three actin-binding surfaces. Elevation of Ca(2+) concentrations releases latches within the constrained structure and produces large shifts in the relative positioning of the domains, permitting gelsolin to bind to and sever actin filaments. How Ca(2+) is able to activate gelsolin has been a major question concerning the function of this protein. We present the improved structure of the C-terminal half of gelsolin bound to monomeric actin at 3.0 A resolution. Two classes of Ca(2+)-binding site are evident on gelsolin: type 1 sites share coordination of Ca(2+) with actin, while type 2 sites are wholly contained within gelsolin. This structure of the complex reveals the locations of two novel metal ion-binding sites in domains G5 and G6, respectively. We identify both as type 2 sites. The absolute conservation of the type 2 calcium-ligating residues across the six domains of gelsolin suggests that this site exists in each of the domains. In total, gelsolin has the potential to bind eight calcium ions, two type 1 and six type 2. The function of the type 2 sites is to facilitate structural rearrangements within gelsolin as part of the activation and actin-binding and severing processes. We propose the novel type 2 site in G6 to be the critical site that initiates overall activation of gelsolin by releasing the tail latch that locks calcium-free gelsolin in a conformation unable to bind actin.


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Modelos Moleculares , Factores Despolimerizantes de la Actina , Actinas/química , Secuencia de Aminoácidos , Sitios de Unión , Cadmio/química , Cadmio/metabolismo , Calcio/química , Secuencia Conservada , Cristalografía por Rayos X , Destrina , Evolución Molecular , Humanos , Ligandos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Modelos Químicos , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...