Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 217: 106046, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34920079

RESUMEN

Oxysterols are a family of over 25 cholesterol metabolites naturally produced by enzymatic or radical oxidation. They are involved in many physiological and pathological pathways. Although their activity has been mainly attributed to the modulation of the Liver X Receptors (LXR), it is currently accepted that oxysterols are quite promiscuous compounds, acting at several targets at the same time. The promiscuity of the oxysterols with the Estrogen Receptor α (ERα) is crucial in several pathologies such as ER+ breast cancer, inflammation and atherosclerosis. Regarding this matter, we have previously reported the synthesis, LXR activity and binding mode of a family of cholestenoic acid analogs with a modified side chain. Here we report the transcriptional activity on the ERα triggered by these compounds and details on the molecular determinants involved in their activities in order to establish structure-activity relationships to shed light over the molecular basis of the promiscuity of these compounds on ER/LXR responses. Our results show that 3ß-hydroxy-5-cholestenoic acid can interact with the ERα receptor in a way similar to 26-hydroxycholesterol and is an agonist of the receptor. Using molecular dynamics simulations, we were able to predict the ERα activity of a set of cholestenoic acid analogs with changes in the flexibility and/or steric requirements of the side chain, some of which exhibited selective activation of ERα or LXR.


Asunto(s)
Receptor alfa de Estrógeno , Oxiesteroles , Colestenos/química , Receptor alfa de Estrógeno/genética , Receptores X del Hígado/agonistas , Oxiesteroles/química
2.
Molecules ; 25(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059479

RESUMEN

Series of novel amides of isoferulic acid, where the phenolic hydroxyl was replaced by a difluoromethyl group, were synthesized and their in vitro antibacterial activities assayed against fourteen bacterial strains (six Gram-positive and eight Gram-negative). A one-pot methodology was developed to obtain the 3'-(difluoromethyl)-4'-methoxycinnamoyl amides using Deoxofluor® as a fluorinating agent. The N-isopropyl, N-isopentyl, and N-(2-phenylethyl) amides 11b, 11d and 11g were the most active and selective against Mycobacterium smegmatis (MIC = 8 µg/mL) with 11b and 11g displaying negligible or no cytotoxicity against HepG2 and A549 cells. Thirteen analogs of N-isopropylamide 11b were also synthesized and their antibacterial activity assayed. Results show that the difluoromethyl moiety enhanced antibacterial activity and selectivity towards M. smegmatis, changing the microorganism inhibition profile of the parent compound. The selectivity exhibited by some of the compounds towards M. smegmatis makes them potential leads in the search for new narrow spectrum antibiotics against M. tuberculosis.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Amidas/síntesis química , Amidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/patogenicidad , Relación Estructura-Actividad
3.
J Steroid Biochem Mol Biol ; 199: 105585, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31931135

RESUMEN

Liver X Receptors (LXRs) are ligand dependent transcription factors activated by oxidized cholesterol metabolites (oxysterols) that play fundamental roles in the transcriptional control of lipid metabolism, cholesterol transport and modulation of inflammatory responses. In the last decade, LXRs have become attractive pharmacological targets for intervention in human metabolic diseases and thus, several efforts have concentrated on the development of synthetic analogues able to modulate LXR transcriptional response. In this sense, we have previously found that cholestenoic acid analogues with a modified side chain behave as LXR inverse agonists. To further investigate the structure-activity relationships and to explore how cholestenoic acid derivatives interact with the LXRs, we evaluated the LXR biological activity of new analogues containing a C24-C25 double bond. Furthermore, a microarray assay was performed to evaluate the recruitment of coregulators to recombinant LXR LBD upon ligand binding. Also, conventional and accelerated molecular dynamics simulations were applied to gain insight on the molecular determinants involved in the inverse agonism. As LXR inverse agonists emerge as very promising candidates to control LXR activity, the cholestenoic acid analogues here depicted constitute a new relevant steroidal scaffold to inhibit LXR action.


Asunto(s)
Colestenos/farmacología , Colesterol/metabolismo , Receptores X del Hígado/química , Oxiesteroles/metabolismo , Colestenos/química , Colesterol/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Metabolismo de los Lípidos , Receptores X del Hígado/genética , Receptores X del Hígado/ultraestructura , Análisis por Micromatrices , Conformación Molecular , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Oxiesteroles/química , Unión Proteica/efectos de los fármacos , Conformación Proteica , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
4.
Steroids ; 151: 108469, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400393

RESUMEN

The DAF-12 receptor is a ligand-activated transcription factor that in its ligand-bound form allows the expression of target genes needed to support the reproductive life cycle of the free-living nematode Caenorhabditis elegans, whereas unbound DAF-12 receptor leads to the developmentally arrested "dauer larvae", specialized for survival and dispersal. The endogenous ligands of the DAF-12 receptor are 3-keto-cholestenoic acids dubbed dafachronic acids. In a previous publication we reported that oxysterols with a shorter side chain (C24) modulate the DAF-12 receptor activity either as partial agonists or, in the case of the C24 alcohol 24-hydroxy-4-cholen-3-one, as an antagonist both in vitro and in vivo. Preliminary structure-activity relationships suggested that this activity profile could be improved with more lipophilic and less acidic functional groups at the end of the side chain. Thus, we have now synthesized two fluorine containing analogues in which the C-24 hydroxyl was replaced by a difluoromethyl group (regarded as a "lipophilic hydroxyl") or a difluoromethylidene group with similar lipophilicity but lacking the hydrogen bond donor capacity. Activity was evaluated in vitro using transactivation cell-based assays and in vivo by the effect on the development of wild-type C. elegans. The 24-difluoromethyl analogue retained the antagonist activity in vitro, being completely devoid of agonist activity and exhibited improved activity in vivo. The difluoromethylidene showed a slight antagonist tendency in vitro (statistically not significant), in the concentration range tested and was weakly active in vivo. None of the compounds were toxic, as treated worms recovered to normal development, when transferred to fresh media without added steroids.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Colenos/síntesis química , Colenos/farmacología , Halogenación , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Técnicas de Química Sintética , Colenos/química , Células HEK293 , Humanos , Enlace de Hidrógeno
5.
Am J Physiol Endocrinol Metab ; 316(6): E1136-E1145, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964702

RESUMEN

Liver X receptors (LXRs) are ligand-dependent transcription factors activated by cholesterol metabolites. These receptors induce a suite of target genes required for de novo synthesis of triglycerides and cholesterol transport in many tissues. Two different isoforms, LXRα and LXRß, have been well characterized in liver, adipocytes, macrophages, and intestinal epithelium among others, but their contribution to cholesterol and fatty acid efflux in the lactating mammary epithelium is poorly understood. We hypothesize that LXR regulates lipogenesis during milk fat production in lactation. Global mRNA analysis of mouse mammary epithelial cells (MECs) revealed multiple LXR/RXR targets upregulated sharply early in lactation compared with midpregnancy. LXRα is the primary isoform, and its protein levels increase throughout lactation in MECs. The LXR agonist GW3965 markedly induced several genes involved in cholesterol transport and lipogenesis and enhanced cytoplasmic lipid droplet accumulation in the HC11 MEC cell line. Importantly, in vivo pharmacological activation of LXR increased the milk cholesterol percentage and induced sterol regulatory element-binding protein 1c (Srebp1c) and ATP-binding cassette transporter a7 (Abca7) expression in MECs. Cumulatively, our findings identify LXRα as an important regulator of cholesterol incorporation into the milk through key nodes of de novo lipogenesis, suggesting a potential therapeutic target in women with difficulty initiating lactation.


Asunto(s)
Colesterol/metabolismo , Epitelio/metabolismo , Lactancia/genética , Receptores X del Hígado/genética , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Benzoatos/farmacología , Bencilaminas/farmacología , Línea Celular , Femenino , Regulación de la Expresión Génica , Lactancia/metabolismo , Lipogénesis/genética , Receptores X del Hígado/metabolismo , Ratones , ARN Mensajero/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
6.
Bioorg Med Chem ; 26(5): 1092-1101, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29428525

RESUMEN

The Liver X receptors (LXRs) are members of the nuclear receptor family, that play fundamental roles in cholesterol transport, lipid metabolism and modulation of inflammatory responses. In recent years, the synthetic steroid N,N-dimethyl-3ß-hydroxycholenamide (DMHCA) arised as a promising LXR ligand. This compound was able to dissociate certain beneficial LXRs effects from those undesirable ones involved in triglyceride metabolism. Here, we synthetized a series of DMHCA analogues with different modifications in the steroidal nucleus involving the A/B ring fusion, that generate changes in the overall conformation of the steroid. The LXRα and LXRß activity of these analogues was evaluated by using a luciferase reporter assay in BHK21 cells. Compounds were tested in both the agonist and antagonist modes. Results indicated that the agonist/antagonist profile is dependent on the steroid configuration at the A/B ring junction. Notably, in contrast to DMHCA, the amide derived from lithocholic acid (2) with an A/B cis configuration and its 6,19-epoxy analogue 4 behaved as LXRα selective agonists, while the 2,19-epoxy analogues with an A/B trans configuration were antagonists of both isoforms. The binding mode of the analogues to both LXR isoforms was assessed by using 50 ns molecular dynamics (MD) simulations. Results revealed conformational differences between LXRα- and LXRß-ligand complexes, mainly in the hydrogen bonding network that involves the C-3 hydroxyl. Overall, these results indicate that the synthetized DMHCA analogues could be interesting candidates for a therapeutic modulation of the LXRs.


Asunto(s)
Amidas/química , Colanos/química , Receptores X del Hígado/metabolismo , Amidas/síntesis química , Amidas/metabolismo , Animales , Sitios de Unión , Línea Celular , Ácidos Cólicos/síntesis química , Ácidos Cólicos/química , Ácidos Cólicos/metabolismo , Cricetinae , Humanos , Receptores X del Hígado/agonistas , Receptores X del Hígado/antagonistas & inhibidores , Simulación de Dinámica Molecular , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína
7.
Mini Rev Med Chem ; 18(5): 428-438, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26776223

RESUMEN

Glucocorticoids are steroid hormones that exert most of their effects through their binding to the glucocorticoid receptor (GR), a ligand regulated transcription factor. Although glucocorticoids are widely used in the clinic, their usage in chronic therapies provokes severe adverse reactions. In the quest for safer glucocorticoids a dissociated model was established that proposes a disconnection between GR activated pathways responsible of desired pharmacological effects and pathways involved in adverse GR reactions. Under this model, a myriad of steroidal and non-steroidal compounds has been characterized, with most of them still producing side effects. X-ray crystallographic studies followed by molecular dynamics analysis led research to insights on the receptor Ligand Binding Domain (LBD), which undergoes specific ligand dependent conformational changes that influence receptor activities. In this sense, the flexibility of the ligand structure would contribute to the final GR outcome. Here, we review different data of 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP), a rigid steroid with potential pharmaceutical interest due to its anti-inflammatory and immunosuppressive activities, lacking several GR adverse reactions. The rigid structure endows this compound with an enhanced selectivity towards GR. Molecular characterization of the GR/21OH-6,19OP complex revealed specific intermediate conformations adopted by the receptor that would explain the influence on GR dimerization and the recruitment of a specific set of GR transcription modulators. We summarize recent data that will contribute to understand the complexity of glucocorticoid response.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Glucocorticoides/efectos adversos , Inmunosupresores/farmacología , Progesterona/análogos & derivados , Receptores de Glucocorticoides/metabolismo , Antiinflamatorios no Esteroideos/química , Glucocorticoides/farmacología , Humanos , Inmunosupresores/química , Modelos Moleculares , Estructura Molecular , Progesterona/química , Progesterona/farmacología
8.
Sci Rep ; 7(1): 6219, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740156

RESUMEN

The distribution of the transcription machinery among different sub-nuclear domains raises the question on how the architecture of the nucleus modulates the transcriptional response. Here, we used fluorescence fluctuation analyses to quantitatively explore the organization of the glucocorticoid receptor (GR) in the interphase nucleus of living cells. We found that this ligand-activated transcription factor diffuses within the nucleus and dynamically interacts with bodies enriched in the coregulator NCoA-2, DNA-dependent foci and chromatin targets. The distribution of the receptor among the nuclear compartments depends on NCoA-2 and the conformation of the receptor as assessed with synthetic ligands and GR mutants with impaired transcriptional abilities. Our results suggest that the partition of the receptor in different nuclear reservoirs ultimately regulates the concentration of receptor available for the interaction with specific targets, and thus has an impact on transcription regulation.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Coactivador 2 del Receptor Nuclear/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcripción Genética , Sitios de Unión , Núcleo Celular/genética , Células Cultivadas , Cromatina/genética , Humanos , Coactivador 2 del Receptor Nuclear/genética , Regiones Promotoras Genéticas , Unión Proteica , Receptores de Glucocorticoides/genética , Activación Transcripcional
9.
J Steroid Biochem Mol Biol ; 165(Pt B): 268-276, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27452335

RESUMEN

Liver X receptors (LXRs) are nuclear receptors that play central roles in the transcriptional control of lipid metabolism. The ability of LXRs to integrate metabolic and inflammation signalling makes them attractive targets for intervention in human metabolic diseases. Several oxidized metabolites of cholesterol (oxysterols) are endogenous LXR ligands, that modulate their transcriptional responses. While 25R-cholestenoic acid is an agonist of the LXRs, the synthetic analogue 27-norcholestenoic acid that lacks the 25-methyl is an inverse agonist. This change in the activity profile is triggered by a disruption of a key interaction between residues His435 and Trp457 that destabilizes the H11-H12 region of the receptor and favors the binding of corepressors. The introduction of fluorine atoms on the oxysterol side chain can favor both hydrophobic interactions as well as hydrogen bonds with the fluorine atoms and may thus induce changes in the receptor that may lead to changes in the activity profile. To evaluate these effects we have synthesized two fluorinated 27-nor-steroids, analogues of 27-norcholestenoic acid, the 25,25-difluoroacid and the corresponding 26-alcohol. The key step was a Reformatsky reaction on the C-24 cholenaldehyde, with ethyl bromodifluoroacetate under high intensity ultrasound (HIU) irradiation, followed by a Barton-McCombie type deoxygenation. Activity was evaluated in a luciferase reporter assay in the human HEK293T cells co-transfected with full length human LXRß expression vector. The 25,25-difluoro-27-norcholestenoic acid was an inverse agonist and antagonist similar to its non-fluorinated analogue while its reduced derivative 25,25-difluoro-27-norcholest-5-ene-3ß,26-diol was an agonist. Molecular dynamics simulation of the ligand-receptor complexes showed that the difluoroacid disrupted the His435-Trp457 interaction although the resulting conformational changes were different from those induced by the non-fluorinated analogue. In the case of the difluoroalcohol, the fluorine atoms actively participated in the interaction with several residues in the ligand binding pocket leading to a stabilization of the active receptor conformation.


Asunto(s)
Colestenos/química , Flúor/química , Hidroxicolesteroles/química , Receptores X del Hígado/agonistas , Noresteroides/química , Oxiesteroles/química , Alcoholes/química , Benzoatos/química , Bencilaminas/química , Colesterol/química , Células HEK293 , Humanos , Enlace de Hidrógeno , Ligandos , Receptores X del Hígado/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Unión Proteica , Transducción de Señal , Distribución Tisular
10.
Steroids ; 112: 109-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27235856

RESUMEN

The DAF-12 receptor in nematodes and the Liver X Receptor (LXR) in mammals are structurally related transcription factors that play key roles in determining the life span of the organism. Both types of receptors are activated by oxysterols, cholesterol metabolites with oxidized side chains. Restricting the movement of the oxysterol side chain to certain orientations may have profound effects in the activity profile, however this has not been explored so far. In a first attempt to obtain analogues of natural ligands of DAF-12 and LXR with restricted side chain mobility we introduced a 16,22-oxygen bridge in 26-hydroxycholesterol, a cholestenoic acid and a dafachronic acid (5-7). Diosgenin was used as starting material, the key step to obtain the 16,22 epoxy functionality was the one pot formation and reduction of a cyclic hemiketal via the oxocarbenium ion using sodium cyanoborohydride. All new compounds were characterized by NMR and mass spectrometry and assayed as ceDAF-12 or LXR ligands in transactivation cell-based assays. The dafachronic acid analogue 7 behaved as a ceDAF-12 agonist.


Asunto(s)
Hidroxicolesteroles/química , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Animales , Línea Celular , Colestenos/química , Cricetinae , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxiesteroles/química
11.
J Pharm Pharmacol ; 68(2): 233-44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26773438

RESUMEN

OBJECTIVES: Many natural antioxidants have poor pharmacokinetic properties that impair their therapeutic use. For hydroxycinnamic acids (HCAs) and other phenolic antioxidants, their major drawback is their low lipophilicity and a rapid metabolism. The difluoromethyl group may be considered as a 'lipophilic hydroxyl' due to its hydrogen bond donor and acceptor properties; this prompted us to assess it as a bioisosteric replacement of a phenolic hydroxyl for increasing the lipophilicity of HCAs. METHODS: Six difluoromethyl-substituted methyl cinnamates (4a-c, 5a-c) related to caffeic acid were synthesized and their antioxidant activity evaluated by chemical (FRAP, DPPH scavenging, inhibition of ß-carotene bleaching, at 1-200 µm), electrochemical (differential pulse voltammetry, cyclic voltammetry) and cell-based (inhibition of lipid peroxidation in erythrocytes, at 1 and 50 µm) assays. KEY FNDINGS: Analogues 4a-c and 5a-c were inactive in FRAP and DPPH assays and only those containing a free phenolic hydroxyl (4a and 5a) exhibited electrochemical activity although with high redox potentials. Compounds 4a,b and 5a,b were active in the inhibition of ß-carotene bleaching assay and all analogues inhibited lipid peroxidation in the human erythrocytes assay. CONCLUSIONS: Lipophilic difluoromethyl-substituted cinnamic esters retain radical scavenging capabilities that prove useful to confer antioxidant properties in a non-polar environment.


Asunto(s)
Antioxidantes/síntesis química , Antioxidantes/farmacología , Ácidos Cumáricos/síntesis química , Ácidos Cumáricos/farmacología , Hidrocarburos Fluorados/síntesis química , Hidrocarburos Fluorados/farmacología , Antioxidantes/química , Compuestos de Bifenilo/química , Células Cultivadas , Ácidos Cumáricos/química , Electroquímica , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Ferricianuros/química , Radicales Libres/química , Humanos , Hidrocarburos Fluorados/química , Peroxidación de Lípido/efectos de los fármacos , Estructura Molecular , Oxidación-Reducción , Picratos/química , beta Caroteno/química
12.
Biochim Biophys Acta ; 1851(12): 1577-86, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26434697

RESUMEN

BACKGROUND: Liver X receptors (LXRs) are transcription factors activated by cholesterol metabolites containing an oxidized side chain. Due to their ability to regulate lipid metabolism and cholesterol transport, they have become attractive pharmacological targets. LXRs are closely related to DAF-12, a nuclear receptor involved in nematode lifespan and regulated by the binding of C-27 steroidal acids. Based on our recent finding that the lack of the C-25 methyl group does not abolish their DAF-12 activity, we evaluated the effect of removing it from the (25R)-cholestenoic acid, a LXR agonist. METHODS: The binding mode and the molecular basis of action of 27-nor-5-cholestenoic acid were evaluated using molecular dynamics simulations. The biological activity was investigated using reporter gene expression assays and determining the expression levels of endogenous target genes. The in vitro MARCoNI assay was used to analyze the interaction with cofactors. RESULTS: 27-Nor-5-cholestenoic acid behaves as an inverse agonist. This correlates with the capacity of the complex to better bind corepressors rather than coactivators. The C-25 methyl moiety would be necessary for the maintenance of a torsioned conformation of the steroid side chain that stabilizes an active LXRß state. CONCLUSION: We found that a 27-nor analog is able to act as a LXR ligand. Interestingly, this minimal structural change on the steroid triggered a drastic change in the LXR response. GENERAL SIGNIFICANCE: Results contribute to improve our understanding on the molecular basis of LXRß mechanisms of action and provide a new scaffold in the quest for selective LXR modulators.


Asunto(s)
Colestenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Receptores Nucleares Huérfanos/antagonistas & inhibidores , Receptores Nucleares Huérfanos/metabolismo , Sitios de Unión , Células HEK293 , Células Hep G2 , Humanos , Ligandos , Receptores X del Hígado , Receptores Nucleares Huérfanos/genética
13.
Proteins ; 83(7): 1297-306, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25921217

RESUMEN

Salpichrolides are natural plant steroids that contain an unusual six-membered aromatic ring D. We recently reported that some of these compounds, and certain analogs with a simplified side chain, exhibited antagonist effects toward the human estrogen receptor (ER), a nuclear receptor whose endogenous ligand has an aromatic A ring (estradiol). Drugs acting through the inhibition or modulation of ERs are frequently used as a hormonal therapy for ER(+) breast cancer. Previous results suggested that the aromatic D ring was a key structural motif for the observed activity; thus, this modified steroid nucleus may provide a new scaffold for the design of novel antiestrogens. Using molecular dynamics (MD) simulation we have modeled the binding mode of the natural salpichrolide A and a synthetic analog with an aromatic D ring within the ERα. These results taken together with the calculated energetic contributions associated to the different ligand-binding modes are consistent with a preferred inverted orientation of the steroids in the ligand-binding pocket with the aromatic ring D occupying a position similar to that observed for the A ring of estradiol. Major changes in both dynamical behavior and global positioning of H11 caused by the loss of the ligand-His524 interaction might explain, at least in part, the molecular basis of the antagonism exhibited by these compounds. Using steered MD we also found a putative unbinding pathway for the steroidal ligands through a cavity formed by residues in H3, H7, and H11, which requires only minor changes in the overall receptor conformation.


Asunto(s)
Ergosterol/análogos & derivados , Estradiol/química , Moduladores de los Receptores de Estrógeno/química , Receptor alfa de Estrógeno/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Secuencias de Aminoácidos , Sitios de Unión , Ergosterol/síntesis química , Ergosterol/química , Moduladores de los Receptores de Estrógeno/síntesis química , Receptor alfa de Estrógeno/química , Humanos , Ligandos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Termodinámica , Interfaz Usuario-Computador
14.
Biochem J ; 465(1): 175-84, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25374049

RESUMEN

Dafachronic acids (DAs) are 3-keto cholestenoic acids bearing a carboxylic acid moiety at the end of the steroid side chain. These compounds interact with the DAF-12 receptor, a ligand-dependent transcription factor that acts as a molecular switch mediating the choice between arrest at diapause or progression to reproductive development and adult lifespan in different nematodes. Recently, we reported that the 27-nor-Δ4-DA was able to directly activate DAF-12 in a transactivation cell-based luciferase assay and rescued the Mig phenotype of daf-9(rh50) Caenorhabditis elegans mutants. In the present paper, to investigate further the relationship between the structure of the steroid side chain and DAF-12 activity, we evaluated the in vitro and in vivo activity of Δ4-DA analogues with modified side chains using transactivation cell-based assays and daf-9(dh6) C. elegans mutants. Our results revealed that introduction of a 24,25-double bond on the cholestenoic acid side chain did not affect DAF-12 activity, whereas shortening the side chain lowered the activity. Most interestingly, the C24 alcohol 24-hydroxy-4-cholen-3-one (6) was an antagonist of the DAF-12 receptor both in vitro and in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Colestenos/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Alelos , Animales , Caenorhabditis elegans/efectos de los fármacos , Colestenos/química , Genes Reporteros , Células HEK293 , Humanos , Ligandos
15.
Eur J Med Chem ; 82: 233-41, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24908652

RESUMEN

The antiestrogenic activity of three natural salpichrolides A, G and B (1, 3 and 4) and of five synthetic analogs containing an aromatic D ring and a simplified side chain (5-9), was evaluated on MCF-7 cells. The 2,3-ene-1-keto steroids 8 and 9 were obtained from 3ß-acetoxy-17(13→18)-abeo-5αH-pregna-13,15,17-trien-20-one, the key step for these syntheses being a Wharton carbonyl rearrangement of a 1,2-epoxy-3-keto steroid to the allylic alcohol using hydrazine hydrate. The antiestrogenic activity was evaluated by performing dose-response experiments in ER(+) MCF-7 breast cancer cells. Dose-dependent proliferation was quantified via [(3)H]-thymidine incorporation after 3 days treatment. Salpichrolides A, G and B and analogs 5, 8 and 9 were active as antiestrogens with compound 9 being the most active of the synthetic analogs. Compounds 5 and 9 were also evaluated against the ER(-) cell line MDA-MB-231 and shown to be inactive.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Ergosterol/análogos & derivados , Antagonistas de Estrógenos/farmacología , Antineoplásicos Hormonales/síntesis química , Antineoplásicos Hormonales/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ergosterol/síntesis química , Ergosterol/química , Ergosterol/farmacología , Antagonistas de Estrógenos/síntesis química , Antagonistas de Estrógenos/química , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
Biochem Pharmacol ; 89(4): 526-35, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24735610

RESUMEN

Glucocorticoids (GCs) are steroid hormones widely used as coadjuvants in the treatment of solid tumors due to their anti-inflammatory effects. However, evidence show that they also may induce chemotherapy resistance, probably through their capacity to inhibit apoptosis triggered by antineoplastic drugs. GCs exert their action by regulating gene expression throughout two main mechanisms: transactivation, where the activated glucocorticoid receptor (GR) directly binds to certain genes; and transrepression, an indirect mechanism by which GR regulates other transcription factors activities. Recently, our group has shown that the rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a selective GR ligand that behaves as an agonist in transrepression assays and as an antagonist in transactivation ones. Here, we have evaluated the anti-inflammatory activity of 21OH-6,19OP, its capacity to generate chemoresistance, as well as its mechanism of action. We found that 21OH-6,19OP inhibits nitrites formation and the inducible nitric oxide synthase (Nos-2) expression in macrophages. It also blocks the expression of both cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) triggered by tumor necrosis factor-alpha (TNF-α) in epithelial lung cancer cells. However, contrary to dexamethasone (DEX), 21OH-6,19OP neither reverts the paclitaxel-induced caspase-3 activity, nor induces the anti-apoptotic Bcl-X(L) gene expression in murine tumor mammary epithelial cells; and importantly, it lacks GCs-associated chemoresistance in a mouse mammary tumor model. Together, our findings suggest that 21OH-6,19OP behaves as a dissociated GC that keeps anti-inflammatory action without affecting the apoptotic process triggered by chemotherapeutic drugs. For these reasons, this steroid may become a putative novel coadjuvant in the treatment of breast cancer.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Macrófagos Peritoneales/efectos de los fármacos , Progesterona/análogos & derivados , Receptores de Glucocorticoides/antagonistas & inhibidores , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/efectos adversos , Antiinflamatorios/farmacología , Antineoplásicos Hormonales/administración & dosificación , Antineoplásicos Hormonales/efectos adversos , Antineoplásicos Hormonales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/metabolismo , Macrófagos Peritoneales/enzimología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias , Progesterona/administración & dosificación , Progesterona/efectos adversos , Progesterona/farmacología , Progesterona/uso terapéutico , Distribución Aleatoria , Receptores de Glucocorticoides/metabolismo , Organismos Libres de Patógenos Específicos
17.
PLoS Biol ; 12(3): e1001813, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24642507

RESUMEN

Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation within the GR DNA-binding domain (GRdim mutant) has been reported as crucial for receptor dimerization and DNA binding, this assumption has recently been challenged. Here we have analyzed the GR oligomerization state in vivo using the number and brightness assay. Our results suggest a complete, reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A) severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state and transcriptional activity was observed. Finally, the state of dimerization affected DNA binding only to a subset of GR binding sites. These results have major implications on future searches for therapeutic glucocorticoids with reduced side effects.


Asunto(s)
Receptores de Glucocorticoides/química , Animales , Células Cultivadas , ADN/metabolismo , Ratones , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores de Glucocorticoides/metabolismo
18.
Eur J Med Chem ; 77: 176-84, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24631897

RESUMEN

The antiproliferative activities of a series of 36 naphthoquinone derivatives were subjected to a Quantitative Structure-Activity Relationships (QSAR) study. For this purpose a panel of four human cancer cell lines was used, namely HBL-100 (breast), HeLa (cervix), SW-1573 (non-small cell lung) and WiDr (colon). A conformation-independent representation of the chemical structure was established in order to avoid leading with the scarce experimental information on X-ray crystal structure of the drug interaction. The 1179 theoretical descriptors derived with E-Dragon and Recon software were simultaneously analyzed through linear regression models based on the Replacement Method variable subset selection technique. The established models were validated and tested through the use of external test sets of compounds, the Leave-One-Out Cross Validation method, Y-Randomization and Applicability Domain analysis.


Asunto(s)
Naftoquinonas/farmacología , Relación Estructura-Actividad Cuantitativa , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Conformación Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
Exp Neurol ; 249: 49-58, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23928325

RESUMEN

Allopregnanolone (A) and pregnanolone (P) are able to modify neural activities acting through the GABAA receptor complex. This capacity makes them useful as anticonvulsant, anxiolytic, or anti-stress compounds. In this study, the performance of seven synthetic steroids (SS) analogous of A or P containing an intramolecular oxygen bridge was evaluated using different assays. Competition assays showed that compounds 1, 5, 6 and 7 affected the binding of specific ligands for the GABAA receptor in a way similar to that of A and P, whereas compounds 3 and 4 stimulated [(3)H]-flunitrazepam and reduced [(35)S]-TBPS binding. The enzyme 3ß-hydroxysteroid dehydrogenase (3ß-HSD) produces the precursor for A and P, and its activity is regulated by steroids. The action of several SS on 3ß-HSD activity was tested in different tissues. All SS analyzed inhibit its activity, but compound 5 was the least effective. Finally, the neuroprotective role of two SS was evaluated in cerebral cortex and hippocampus cultures subjected to hypoxia. Glial fibrillary acidic protein (GFAP) increase was prevented by A, P, and compounds 3 and 5. Only A, P and compound 5 prevented neurofilament (NF160/200) decrease in hippocampus cultures, whereas A and compound 5 partially prevented NF200 and NF160 decreases respectively in cerebral cortex cultures. A prevented microtubule associated protein (MAP 2b) decrease in cerebral cortex cultures, while in hippocampus cultures only compounds 3 and 5 had effect. All steroids prevented MAP 2c decrease in both brain regions.


Asunto(s)
Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxígeno/metabolismo , Receptores de GABA-A/metabolismo , Esteroides/síntesis química , Esteroides/farmacología , Animales , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Fármacos Neuroprotectores/metabolismo , Técnicas de Cultivo de Órganos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Esteroides/metabolismo
20.
Bioorg Med Chem Lett ; 23(10): 2893-6, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23570785

RESUMEN

27-Nor-Δ(4)-dafachronic acid was prepared in nine steps and 14% overall yield by two sequential 2-carbon homologations from 20ß-carboxyaldehyde-4-pregnen-3-one. Its activity was evaluated in vivo, where it rescued the Mig phenotype of daf-9(rh50) Caenorhabditis elegans mutants and restored their normal resistance to oxidative stress. 27-Nor-Δ(4)-dafachronic acid was also able to directly bind and activate DAF-12 in a transactivation cell-based luciferase reporter assay, although it was less active than the corresponding 25R-and 25S dafachronic acids. The binding mode of the 27-Nor steroid was studied by molecular dynamics using a homology model of the CeDAF-12 receptor.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/química , Colestenos/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Colestenos/síntesis química , Colestenos/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Receptores Citoplasmáticos y Nucleares/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA