Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-39060375

RESUMEN

PURPOSE: Cachexia is a complex syndrome characterized by unintentional weight loss, progressive muscle wasting and loss of appetite. Anti-Fn14 antibody (mAb 002) targets the TWEAK receptor (Fn14) in murine models of cancer cachexia and can extend the lifespan of mice by restoring the body weight of mice. Here, we investigated glucose metabolic changes in murine models of cachexia via [18F]FDG PET imaging, to explore whether Fn14 plays a role in the metabolic changes that occur during cancer cachexia. METHODS: [18F]FDG PET/MRI imaging was performed in cachexia-inducing tumour models versus models that do not induce cachexia. SUVaverage was calculated for all tumours via volume of interest (VOI) analysis of PET/MRI overlay images using PMOD software. RESULTS: [18F]FDG PET imaging demonstrated increased tumour and brain uptake in cachectic versus non-cachectic tumour-bearing mice. Therapy with mAb 002 was able to reduce [18F]FDG uptake in tumours (P < 0.05, n = 3). Fn14 KO tumours did not induce body weight loss and did not show an increase in [18F]FDG tumour and brain uptake over time. In non-cachectic mice bearing Fn14 KO tumours, [18F]FDG tumour uptake was significantly lower (P < 0.01) than in cachectic mice bearing Fn14 WT counterparts. As a by-product of glucose metabolism, l-lactate production was also increased in cachexia-inducing tumours expressing Fn14. CONCLUSION: Our results demonstrate that Fn14 receptor activation is linked to glucose metabolism of cachexia-inducing tumours.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39060374

RESUMEN

BACKGROUND: CI-8993 is a fully human IgG1κ monoclonal antibody (mAb) that binds specifically to immune checkpoint molecule VISTA (V-domain Ig suppressor of T-cell activation). Phase I safety has been established in patients with advanced cancer (NCT02671955). To determine the pharmacokinetics and biodistribution of CI-8993 in patients, we aimed to develop 89Zr-labelled CI-8993 and validate PET imaging and quantitation in preclinical models prior to a planned human bioimaging trial. METHODS: CI-8993 and human isotype IgG1 control were conjugated to the metal ion chelator p-isothiocyanatobenzyl-desferrioxamine (Df). Quality of conjugates were assessed by SE-HPLC, SDS-PAGE, and FACS. After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. [89Zr]Zr-Df-CI-8993 alone (1 mg/kg, 4.6 MBq) or in combination with 30 mg/kg unlabelled CI-8993, as well as isotype control [89Zr]Zr-Df-IgG1 (1 mg/kg, 4.6 MBq) were assessed in human VISTA knock-in female (C57BL/6 N-Vsirtm1.1(VSIR)Geno, huVISTA KI) or control C57BL/6 mice bearing syngeneic MB49 bladder cancer tumours; and in BALB/c nu/nu mice bearing pancreatic Capan-2 tumours. RESULTS: Stable constructs with an average chelator-to-antibody ratio of 1.81 were achieved. SDS-PAGE and SE-HPLC showed integrity of CI-8993 was maintained after conjugation; and ELISA indicated no impact of conjugation and radiolabelling on binding to human VISTA. PET imaging and biodistribution in MB49 tumour-bearing huVISTA KI female mice showed specific localisation of [89Zr]Zr-Df-CI-8993 to VISTA in spleen and tumour tissues expressing human VISTA. Specific tumour uptake was also demonstrated in Capan-2 xenografted BALB/c nu/nu mice. CONCLUSIONS: We radiolabelled and validated [89Zr]Zr-Df-CI-8993 for specific binding to huVISTA in vivo. Our results demonstrate that 89Zr-labelled CI-8993 is now suitable for targeting and imaging VISTA expression in human trials.

4.
Eur J Nucl Med Mol Imaging ; 51(11): 3202-3214, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730087

RESUMEN

PURPOSE: ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS: ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS: The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION: [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.


Asunto(s)
Anticuerpos Biespecíficos , Antígeno B7-H1 , Circonio , Animales , Circonio/química , Ratones , Antígeno B7-H1/metabolismo , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Distribución Tisular , Humanos , Línea Celular Tumoral , Radioisótopos/química , Deferoxamina/química , Deferoxamina/análogos & derivados , Tomografía de Emisión de Positrones , Femenino , Marcaje Isotópico , Ratones Endogámicos BALB C , Isotiocianatos
5.
Nucl Med Biol ; 122-123: 108366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37473513

RESUMEN

INTRODUCTION: Anti-ASCT2 antibody drug conjugate (ADC) MEDI7247 has been under development as a potential anti-cancer therapy for patients with selected relapsed/refractory hematological malignancies and advanced solid tumors by MedImmune. Although promising efficacy was observed in the clinic, pharmacokinetic (PK) analyses observed low exposure of MEDI7247 in phase I hematological patients. To investigate the biodistribution properties of MEDI7247, MEDI7247 and control antibodies were radiolabeled with zirconium-89 and in vitro and in vivo properties characterized. METHODS: MEDI7247 (human anti-ASCT2 antibody conjugated with pyrrolobenzodiazepine (PBD)) and MEDI7519 (MEDI7247 without PBD drug conjugate) and an isotype control antibody drug conjugate construct were conjugated with p-isothiocyanatobenzyl-deferoxamine (Df) and radiolabeled with zirconium-89. In vitro studies included determining the radiochemical purity, protein integrity, immunoreactivity (Lindmo analysis), apparent antigen binding affinity for ASCT2-positive cells by Scatchard analysis and serum stability of the radiolabeled immunoconjugates. In vivo studies included biodistribution and PET/MRI imaging studies of the radiolabeled immunoconjugates in an ASCT2-positive tumor model, HT-29 colorectal carcinoma xenografts. RESULTS: Conditions for the Df-conjugation and radiolabeling of antibody constructs were determined to produce active radioimmunoconjugates. In vivo biodistribution and whole body PET/MRI imaging studies of [89Zr]Zr-Df-MEDI7519 and [89Zr]Zr-Df-MEDI7247 radioimmunoconjugates in HT-29 colon carcinoma xenografts in BALB/c nude mice demonstrated specific tumor localization. However, more rapid blood clearance and non-specific localization in liver was observed for [89Zr]Zr-Df-MEDI7247 and [89Zr]Zr-Df-MEDI7519 compared to isotype control ADC. Except for liver and bone, other normal tissues demonstrated clearance reflecting the blood clearance for all three constructs and no other abnormal tissue uptake. CONCLUSIONS AND ADVANCES IN KNOWLEDGE: Preclinical biodistribution analyses of [89Zr]Zr-Df-MEDI7247 and [89Zr]Zr-Df-MEDI7519 showed the biodistribution pattern of anti-ASCT2 ADC MEDI7247 was similar to parental MEDI7519, and both antibodies showed specific tumor uptake compared to an isotype control ADC. This study highlights an important role nuclear medicine imaging techniques can play in early preclinical assessment of drug specificity as part of the drug development pipeline.


Asunto(s)
Neoplasias del Colon , Inmunoconjugados , Ratones , Animales , Humanos , Distribución Tisular , Inmunoconjugados/farmacocinética , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Circonio/química , Línea Celular Tumoral
6.
Nucl Med Biol ; 116-117: 108308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36502585

RESUMEN

INTRODUCTION: Tissue transglutaminase 2 (TG2) is a calcium-dependent enzyme which cross-links proteins. It is overexpressed in many diseases and plays a key role in tissue remodeling, including cell adhesion and migration. Overexpression of TG2 in breast cancer is a marker for patients at risk of recurrence. Non-invasive imaging of TG2 can therefore play an important role in patient management. TG2 probes labeled with the positron emitters 11C and 18F have thus far not found widespread application due to purity and metabolism issues. Our approach was to radiolabel a TG2 selective, 13-mer amino acid peptide, which was modified with a 5-azidopentanoic acid group at the N-terminus via a copper free click chemistry approach. METHODS: Radiochemistry was performed and fully automated using an iPhase FlexLab module. We produced the radiolabeling synthon [18F]FBz-DBCO from [18F]SFB and DBCO-amine. After HPLC purification, [18F]FBz-DBCO was reacted with the modified peptide and the putative radiotracer purified by HPLC. In vivo imaging using the radiolabeled amine was performed in mice bearing either TG2 expressing MDA-MB-231 or non-TG2 expressing MCF-7 xenografts as negative control. Expression of the target was confirmed using immunohistochemistry and western blot techniques. RESULTS: We obtained 9 ± 2 GBq of the radiolabeled peptide from 55 ± 5 GBq of fluorine-18 in an overall synthesis time of 160 min from end of bombardment (EOB), including HPLC purification and reformulation. Small animal PET/MR imaging showed that visualization of MDA-MB-231 tumors using the radiolabeled peptide could only be achieved due to differences in clearance between tumor and surrounding tissue. In the MCF-7 xenograft model, radiotracer clearance from tumor and surrounding tissue occurred at a similar rate, thus making it impossible to visualize MCF-7 tumors. The presence of TG2 in MDA-MB-231 tumors and absence in MCF-7 tumors was confirmed by immunohistochemistry staining and western blot analysis. CONCLUSION: A fully automated synthesis of a TG2 selective, 13-amino-acid peptide modified with 5-azido pentynoic acid at the N-terminal was established using [18F]FBzDBCO as a prosthetic group. Although our results show that radiolabeled peptides have potential as imaging agents for TG2, more research needs to be performed to improve radiotracer kinetics.


Asunto(s)
Péptidos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Humanos , Ratones , Animales , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor , Línea Celular Tumoral
7.
Eur J Nucl Med Mol Imaging ; 48(10): 3075-3088, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33608805

RESUMEN

PURPOSE: Τhis study aimed to optimize the 89Zr-radiolabelling of bintrafusp alfa investigational drug product and controls, and perform the in vitro and in vivo characterization of 89Zr-Df-bintrafusp alfa and 89Zr-Df-control radioconjugates. METHODS: Bintrafusp alfa (anti-PD-L1 human IgG1 antibody fused to TGF-ß receptor II (TGF-ßRII), avelumab (anti-PD-L1 human IgG1 control antibody), isotype control (mutated inactive anti-PD-L1 IgG1 control antibody), and trap control (mutated inactive anti-PD-L1 human IgG1 fused to active TGF-ßRII) were chelated with p-isothiocyanatobenzyl-desferrioxamine (Df). After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. In vivo biodistribution and imaging studies were performed with PET/CT to identify and quantitate 89Zr-Df-bintrafusp alfa tumour uptake in a PD-L1/TGF-ß-positive murine breast cancer model (EMT-6). Specificity of 89Zr-Df-bintrafusp alfa was assessed via a combined biodistribution and imaging experiment in the presence of competing cold bintrafusp alfa (1 mg/kg). RESULTS: Nanomolar affinities for PD-L1 were achieved with 89Zr-Df-bintrafusp alfa and 89Zr-avelumab. Biodistribution and imaging studies in PD-L1- and TGF-ß-positive EMT-6 tumour-bearing BALB/c mice demonstrated the biologic similarity of 89Zr-Df-bintrafusp alfa and 89Zr-avelumab indicating the in vivo distribution pattern of bintrafusp alfa is driven by its PD-L1 binding arm. Competition study with 1 mg of unlabelled bintrafusp alfa or avelumab co-administered with trace dose of 89Zr-labelled bintrafusp alfa demonstrated the impact of dose and specificity of PD-L1 targeting in vivo. CONCLUSION: Molecular imaging of 89Zr-Df-bintrafusp alfa biodistribution was achievable and allows non-invasive quantitation of tumour uptake of 89Zr-Df-bintrafusp alfa, suitable for use in bioimaging clinical trials in cancer patients.


Asunto(s)
Antígeno B7-H1 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Factores Inmunológicos , Ratones , Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones , Distribución Tisular , Circonio
8.
Theranostics ; 8(15): 4199-4209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30128047

RESUMEN

B7-H3 is a transmembrane protein widely expressed in a variety of cancers and has been shown to play a role in anti-tumor immunity. This study aims to develop a molecular imaging probe to identify B7-H3 expression in tumors and to develop 89Zr-DS-5573a as a theranostic that could aid patient selection in clinical Phase I studies. Methods: The anti-B7-H3 humanised monoclonal antibody DS-5573a was labeled with zirconium-89 (89Zr-), and assessed for radiochemical purity, immunoreactivity (Lindmo analysis), antigen binding affinity (Scatchard analysis), and serum stability in vitro. In vivo biodistribution and imaging studies were performed with positron emission tomography and magnetic resonance imaging (PET/MRI) studies to identify and quantitate 89Zr-DS-5573a tumor uptake in a B7-H3-positive breast cancer model (MDA-MB-231) and a B7-H3-negative murine colon cancer model (CT26). Imaging and biodistribution studies were also performed in MDA-MB-231 tumor-bearing SCID mice in the absence and presence of therapeutic DS-5573a antibody dose (3 mg/kg DS-5573a). Results:89Zr-DS-5573a showed high and specific binding to B7-H3-expressing MDA-MB-231 cells (immunoreactivity on day 0, 75.0 ± 2.9%), and low binding to B7-H3-negative CT26 cells (immunoreactivity on day 0, 10.85 ± 0.11%) in vitro. 89Zr-DS-5573a demonstrated good serum stability in vitro with 57.2 ± 2.0% of immunoreactivity remaining on day 7. In vivo biodistribution studies showed high uptake of 89Zr-DS-5573a in B7-H3-expressing MDA-MB-231 tumor-bearing mice, achieving 32.32 ± 6.55 %ID/g on day 7 post injection in BALB/c nu/nu mice and 25.76 ± 1.79 %ID/g in SCID mice, with minimal evidence of non-specific uptake in normal tissues, and excellent tumor localization on PET/MRI. In a combined imaging/therapy study, receptor saturation was demonstrated in tumors responding to therapy. Conclusion:89Zr-DS-5573a demonstrates specific and prolonged targeting of B7-H3-expressing tumors in vivo. Saturation of binding sites was demonstrated in tumors responding to DS-5573a therapy. These results indicate that 89Zr-DS-5573a has potential to target B7-H3-expressing tumors in cancer patients. Furthermore 89Zr-DS-5573a has the potential to provide important insights into T cell biology through its specific binding to B7-H3.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antígenos B7/análisis , Neoplasias de la Mama/diagnóstico , Neoplasias del Colon/diagnóstico , Imagen Molecular/métodos , Radioisótopos/administración & dosificación , Linfocitos T/química , Circonio/administración & dosificación , Animales , Modelos Animales de Enfermedad , Humanos , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Ratones SCID , Tomografía de Emisión de Positrones/métodos , Nanomedicina Teranóstica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA