Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(4): 109251, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38495826

RESUMEN

The RNA-binding protein PARP13 is a primary factor in the innate antiviral response, which suppresses translation and drives decay of bound viral and host RNA. PARP13 interacts with many proteins encoded by interferon-stimulated genes (ISG) to activate antiviral pathways including co-translational addition of ISG15, or ISGylation. We performed enhanced crosslinking immunoprecipitation (eCLIP) and RNA-seq in human cells to investigate PARP13's role in transcriptome regulation for both basal and antiviral states. We find that the antiviral response shifts PARP13 target localization, but not its binding preferences, and that PARP13 supports the expression of ISGylation-related genes, including PARP13's cofactor, TRIM25. PARP13 associates with TRIM25 via RNA-protein interactions, and we elucidate a transcriptome-wide periodicity of PARP13 binding around TRIM25. Taken together, our study implicates PARP13 in creating and maintaining a cellular environment poised for an antiviral response through limiting PARP13 translation, regulating access to distinct mRNA pools, and elevating ISGylation machinery expression.

2.
ACS Chem Biol ; 17(1): 17-23, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34904435

RESUMEN

Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.


Asunto(s)
Antivirales/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , N-Glicosil Hidrolasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Dasatinib/farmacología , Dominios Proteicos , SARS-CoV-2/enzimología
3.
J Biol Chem ; 297(3): 101005, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34314685

RESUMEN

Barth syndrome (BTHS) is an X-linked disorder of mitochondrial phospholipid metabolism caused by pathogenic variants in TAFFAZIN, which results in abnormal cardiolipin (CL) content in the inner mitochondrial membrane. To identify unappreciated pathways of mitochondrial dysfunction in BTHS, we utilized an unbiased proteomics strategy and identified that complex I (CI) of the mitochondrial respiratory chain and the mitochondrial quality control protease presenilin-associated rhomboid-like protein (PARL) are altered in a new HEK293-based tafazzin-deficiency model. Follow-up studies confirmed decreased steady state levels of specific CI subunits and an assembly factor in the absence of tafazzin; this decrease is in part based on decreased transcription and results in reduced CI assembly and function. PARL, a rhomboid protease associated with the inner mitochondrial membrane with a role in the mitochondrial response to stress, such as mitochondrial membrane depolarization, is increased in tafazzin-deficient cells. The increased abundance of PARL correlates with augmented processing of a downstream target, phosphoglycerate mutase 5, at baseline and in response to mitochondrial depolarization. To clarify the relationship between abnormal CL content, CI levels, and increased PARL expression that occurs when tafazzin is missing, we used blue-native PAGE and gene expression analysis to determine that these defects are remediated by SS-31 and bromoenol lactone, pharmacologic agents that bind CL or inhibit CL deacylation, respectively. These findings have the potential to enhance our understanding of the cardiac pathology of BTHS, where defective mitochondrial quality control and CI dysfunction have well-recognized roles in the pathology of diverse forms of cardiac dysfunction.


Asunto(s)
Aciltransferasas/genética , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Aciltransferasas/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Células HEK293 , Humanos , Lipidómica , Proteómica
4.
Methods ; 196: 56-67, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33662561

RESUMEN

Exonic circular RNAs (circRNAs) are RNA molecules that are covalently closed by back-splicing via canonical splicing machinery. Despite overlapping sequences, exon circularization generates RNA secondary structures through intramolecular base-pairing that are different from the linear transcript. Here we review factors that may affect circRNA structure and how structure affects circRNA function and regulation. We highlight considerations for RNA sequencing and expression measurement to ensure highly structured circRNAs are accurately represented by the data and discuss issues that need to be addressed in generating circRNAs to recapitulate their endogenous structures. We conclude our review by discussing experimental strategies on revealing the varied roles of RNA structure in circRNA biogenesis, function and decay.


Asunto(s)
ARN Circular , ARN , Secuencia de Bases , Exones , ARN/genética , ARN/metabolismo , Empalme del ARN/genética , ARN Circular/genética
5.
Cell Rep Methods ; 1(6): 100088, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-35474897

RESUMEN

Molecular interactions at identical transcriptomic locations or at proximal but non-overlapping sites can mediate RNA modification and regulation, necessitating tools to uncover these spatial relationships. We present nearBynding, a flexible algorithm and software pipeline that models spatial correlation between transcriptome-wide tracks from diverse data types. nearBynding can process and correlate interval as well as continuous data and incorporate experimentally derived or in silico predicted transcriptomic tracks. nearBynding offers visualization functions for its statistics to identify colocalizations and adjacent features. We demonstrate the application of nearBynding to correlate RNA-binding protein (RBP) binding preferences with other RBPs, RNA structure, or RNA modification. By cross-correlating RBP binding and RNA structure data, we demonstrate that nearBynding recapitulates known RBP binding to structural motifs and provides biological insights into RBP binding preference of G-quadruplexes. nearBynding is available as an R/Bioconductor package and can run on a personal computer, making correlation of transcriptomic features broadly accessible.


Asunto(s)
Proteínas de Unión al ARN , Transcriptoma , Transcriptoma/genética , Proteínas de Unión al ARN/genética , Sitios de Unión/genética , ARN/genética , Unión Proteica
6.
Mol Cell ; 78(1): 70-84.e6, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32017897

RESUMEN

Post-transcriptional mechanisms regulate the stability and, hence, expression of coding and noncoding RNAs. Sequence-specific features within the 3' untranslated region (3' UTR) often direct mRNAs for decay. Here, we characterize a genome-wide RNA decay pathway that reduces the half-lives of mRNAs based on overall 3' UTR structure formed by base pairing. The decay pathway is independent of specific single-stranded sequences, as regulation is maintained in both the original and reverse complement orientation. Regulation can be compromised by reducing the overall structure by fusing the 3' UTR with an unstructured sequence. Mutating base-paired RNA regions can also compromise this structure-mediated regulation, which can be restored by re-introducing base-paired structures of different sequences. The decay pathway requires the RNA-binding protein UPF1 and its associated protein G3BP1. Depletion of either protein increased steady-state levels of mRNAs with highly structured 3' UTRs as well as highly structured circular RNAs. This structure-dependent mechanism therefore enables cells to selectively regulate coding and noncoding RNAs.


Asunto(s)
Regiones no Traducidas 3' , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Emparejamiento Base , Línea Celular , Regulación de la Expresión Génica , Humanos , ARN Circular/química , ARN Circular/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1865(12): 165538, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449969

RESUMEN

BACKGROUND: Methylmalonic acidemia (MMA) and propionic acidemia (PA) are related disorders of mitochondrial propionate metabolism, caused by defects in methylmalonyl-CoA mutase (MUT) and propionyl-CoA carboxylase (PCC), respectively. These biochemical defects lead to a complex cascade of downstream metabolic abnormalities, and identification of these abnormal pathways has important implications for understanding disease pathophysiology. Using a multi-omics approach in cellular models of MMA and PA, we identified serine and thiol metabolism as important areas of metabolic dysregulation. METHODS: We performed global proteomic analysis of fibroblasts and untargeted metabolomics analysis of plasma from individuals with MMA to identify novel pathways of dysfunction. We probed these novel pathways in CRISPR-edited, MUT and PCCA null HEK293 cell lines via targeted metabolomics, gene expression analysis, and flux metabolomics tracing utilization of 13C-glucose. RESULTS: Proteomic analysis of fibroblasts identified upregulation of multiple proteins involved in serine synthesis and thiol metabolism including: phosphoserine amino transferase (PSAT1), cystathionine beta synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST). Metabolomics analysis of plasma revealed significantly increased levels of cystathionine and glutathione, central metabolites in thiol metabolism. CRISPR-edited MUT and PCCA HEK293 cells recapitulate primary defects of MMA and PA and have upregulation of transcripts associated with serine and thiol metabolism including PSAT1. 13C-glucose flux metabolomics in MUT and PCCA null HEK293 cells identified increases in serine de novo biosynthesis, serine transport, and abnormal downstream TCA cycle utilization. CONCLUSION: We identified abnormal serine metabolism as a novel area of cellular dysfunction in MMA and PA, thus introducing a potential new target for therapeutic investigation.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Acidemia Propiónica/metabolismo , Serina/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Células HEK293 , Humanos , Metaboloma , Metabolómica , Proteoma/metabolismo , Proteómica
8.
Biochemistry ; 56(28): 3571-3578, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28650145

RESUMEN

DEAD-box proteins are nonprocessive RNA helicases that play diverse roles in cellular processes. The Neurospora crassa DEAD-box protein CYT-19 promotes mitochondrial group I intron splicing and functions as a general RNA chaperone. CYT-19 includes a disordered, arginine-rich "C-tail" that binds RNA, positioning the helicase core to capture and unwind nearby RNA helices. Here we probed the C-tail further by varying the number and positions of arginines within it. We found that removing sets of as few as four of the 11 arginines reduced RNA unwinding activity (kcat/KM) to a degree equivalent to that seen upon removal of the C-tail, suggesting that a minimum or "threshold" number of arginines is required. In addition, a mutant with 16 arginines displayed RNA unwinding activity greater than that of wild-type CYT-19. The C-tail modifications impacted unwinding only of RNA helices within constructs that included an adjacent helix or structured RNA element that would allow C-tail binding, indicating that the helicase core remained active in the mutants. In addition, changes in RNA unwinding efficiency of the mutants were mirrored by changes in functional RNA affinity, as determined from the RNA concentration dependence of ATPase activity, suggesting that the C-tail functions primarily to increase RNA affinity. Interestingly, the salt concentration dependence of RNA unwinding activity is unaffected by C-tail composition, suggesting that the C-tail uses primarily hydrogen bonding, not electrostatic interactions, to bind double-stranded RNA. Our results provide insights into how an unstructured C-tail contributes to DEAD-box protein activity and suggest parallels with other families of RNA- and DNA-binding proteins.


Asunto(s)
Arginina/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/metabolismo , ARN/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Arginina/química , ARN Helicasas DEAD-box/química , Proteínas Fúngicas/química , Neurospora crassa/química , Conformación de Ácido Nucleico , ARN/química , ARN Catalítico/química , ARN Catalítico/metabolismo , Tetrahymena/química , Tetrahymena/enzimología , Tetrahymena/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...