Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559181

RESUMEN

Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in hematopoiesis, reveal malignant hematopoietic cells with clinically significant features and measure gene signatures linked to pathological pathways. However, reliable identification of cell types is a crucial bottleneck in single-cell analysis. Available databases contain dissimilar nomenclature and non-concurrent marker sets, leading to inconsistent annotations and poor interpretability. Furthermore, current tools focus mostly on physiological cell types, lacking extensive applicability in disease. We developed the Cell Marker Accordion, a user-friendly platform for the automatic annotation and biological interpretation of single-cell populations based on consistency weighted markers. We validated our approach on peripheral blood and bone marrow single-cell datasets, using surface markers and expert-based annotation as the ground truth. In all cases, we significantly improved the accuracy in identifying cell types with respect to any single source database. Moreover, the Cell Marker Accordion can identify disease-critical cells and pathological processes, extracting potential biomarkers in a wide variety of contexts in human and murine single-cell datasets. It characterizes leukemia stem cell subtypes, including therapy-resistant cells in acute myeloid leukemia patients; it identifies malignant plasma cells in multiple myeloma samples; it dissects cell type alterations in splicing factor-mutant cells from myelodysplastic syndrome patients; it discovers activation of innate immunity pathways in bone marrow from mice treated with METTL3 inhibitors. The breadth of these applications elevates the Cell Marker Accordion as a flexible, faithful and standardized tool to annotate and interpret hematopoietic populations in single-cell datasets focused on the study of hematopoietic development and disease.

2.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961434

RESUMEN

During the COVID-19 pandemic, hematopoietic stem cell transplant (HSCT) recipients faced an elevated mortality rate from SARS-CoV-2 infection, ranging between 10-40%. The SARS-CoV-2 mRNA vaccines are important tools in preventing severe disease, yet their efficacy in the post-transplant setting remains unclear, especially in patients subjected to myeloablative chemotherapy and immunosuppression. We evaluated the humoral and adaptive immune responses to the SARS-CoV-2 mRNA vaccination series in 42 HSCT recipients and 5 healthy controls. Peripheral blood mononuclear nuclear cells and serum were prospectively collected before and after each dose of the SARS-CoV-2 vaccine. Post-vaccination responses were assessed by measuring anti-spike IgG and nucleocapsid titers, and antigen specific T cell activity, before and after vaccination. In order to examine mechanisms behind a lack of response, pre-and post-vaccine samples were selected based on humoral and cellular responses for single-cell RNA sequencing with TCR and BCR sequencing. Our observations revealed that while all participants eventually mounted a humoral response, transplant recipients had defects in memory T cell populations that were associated with an absence of T cell response, some of which could be detected pre-vaccination.

3.
STAR Protoc ; 3(4): 101823, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595959

RESUMEN

Thousands of RNA-binding proteins orchestrate RNA processing and altered protein-RNA interactions frequently lead to disease. Here, we present experimental and computational analysis pipelines of fractionated eCLIP-seq (freCLIP-seq), a modification of enhanced UV-crosslinking and RNA immunoprecipitation followed by sequencing. FreCLIP-seq allows transcriptome-wide analysis of protein-RNA interactions at single-nucleotide level and provides an additional level of resolution by isolating binding signals of individual RNA-binding proteins within a multicomponent complex. Binding occupancy can be inferred from read counts and crosslinking events. For complete details on the use and execution of this protocol, please refer to Biancon et al. (2022).


Asunto(s)
ARN , Transcriptoma , ARN/genética , ARN/metabolismo , Transcriptoma/genética , Sitios de Unión , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...