Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Wellcome Open Res ; 6: 42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824913

RESUMEN

MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.

2.
Wellcome Open Res ; 5: 287, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34632085

RESUMEN

Background: The -α 3.7I-thalassaemia deletion is very common throughout Africa because it protects against malaria. When undertaking studies to investigate human genetic adaptations to malaria or other diseases, it is important to account for any confounding effects of α-thalassaemia to rule out spurious associations. Methods: In this study we have used direct α-thalassaemia genotyping to understand why GWAS data from a large malaria association study in Kilifi Kenya did not identify the α-thalassaemia signal. We then explored the potential use of a number of new approaches to using GWAS data for imputing α-thalassaemia as an alternative to direct genotyping by PCR. Results: We found very low linkage-disequilibrium of the directly typed data with the GWAS SNP markers around α-thalassaemia and across the haemoglobin-alpha ( HBA) gene region, which along with a complex haplotype structure, could explain the lack of an association signal from the GWAS SNP data. Some indirect typing methods gave results that were in broad agreement with those derived from direct genotyping and could identify an association signal, but none were sufficiently accurate to allow correct interpretation compared with direct typing, leading to confusing or erroneous results. Conclusions: We conclude that going forwards, direct typing methods such as PCR will still be required to account for α-thalassaemia in GWAS studies.

3.
Science ; 356(6343)2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28522690

RESUMEN

The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.


Asunto(s)
Resistencia a la Enfermedad/genética , Eritrocitos/parasitología , Glicoforinas , Interacciones Huésped-Parásitos/genética , Malaria Falciparum/genética , Modelos Moleculares , Adulto , África del Sur del Sahara , Niño , Variaciones en el Número de Copia de ADN/genética , Frecuencia de los Genes , Genoma Humano/genética , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Estructura Secundaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
4.
Genetics ; 205(1): 303-316, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27838627

RESUMEN

The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries.


Asunto(s)
Población Negra/genética , ADN Antiguo/análisis , Estructuras Genéticas , África Austral , ADN Antiguo/química , Frecuencia de los Genes , Variación Genética , Genética de Población/métodos , Genotipo , Haplotipos , Humanos , Lesotho , Namibia , Filogeografía/métodos
6.
Eur J Hum Genet ; 24(1): 120-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25898922

RESUMEN

In most societies, surnames are passed down from fathers to sons, just like the Y chromosome. It follows that, theoretically, men sharing the same surnames would also be expected to share related Y chromosomes. Previous investigations have explored such relationships, but so far, the only detailed studies that have been conducted are on samples from the British Isles. In order to provide additional insights into the correlation between surnames and Y chromosomes, we focused on the Spanish population by analysing Y chromosomes from 2121 male volunteers representing 37 surnames. The results suggest that the degree of coancestry within Spanish surnames is highly dependent on surname frequency, in overall agreement with British but not Irish surname studies. Furthermore, a reanalysis of comparative data for all three populations showed that Irish surnames have much greater and older surname descent clusters than Spanish and British ones, suggesting that Irish surnames may have considerably earlier origins than Spanish or British ones. Overall, despite closer geographical ties between Ireland and Britain, our analysis points to substantial similarities in surname origin and development between Britain and Spain, while possibly hinting at unique demographic or social events shaping Irish surname foundation and development.


Asunto(s)
Cromosomas Humanos Y , Genética de Población/historia , Patrón de Herencia , Nombres , Padre/historia , Variación Genética , Haplotipos , Historia Medieval , Humanos , Irlanda , Masculino , España , Reino Unido , Población Blanca
7.
Eur J Hum Genet ; 24(3): 429-36, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26173964

RESUMEN

Greek colonisation of South Italy and Sicily (Magna Graecia) was a defining event in European cultural history, although the demographic processes and genetic impacts involved have not been systematically investigated. Here, we combine high-resolution surveys of the variability at the uni-parentally inherited Y chromosome and mitochondrial DNA in selected samples of putative source and recipient populations with forward-in-time simulations of alternative demographic models to detect signatures of that impact. Using a subset of haplotypes chosen to represent historical sources, we recover a clear signature of Greek ancestry in East Sicily compatible with the settlement from Euboea during the Archaic Period (eighth to fifth century BCE). We inferred moderate sex-bias in the numbers of individuals involved in the colonisation: a few thousand breeding men and a few hundred breeding women were the estimated number of migrants. Last, we demonstrate that studies aimed at quantifying Hellenic genetic flow by the proportion of specific lineages surviving in present-day populations may be misleading.


Asunto(s)
Genética de Población , Demografía , Femenino , Geografía , Grecia , Haplotipos/genética , Humanos , Masculino , Mutación/genética , Filogenia , Sicilia
8.
Genome Biol Evol ; 7(9): 2560-8, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26363465

RESUMEN

The expansion of Bantu-speaking agropastoralist populations had a great impact on the genetic, linguistic, and cultural variation of sub-Saharan Africa. It is generally accepted that Bantu languages originated in an area around the present border between Cameroon and Nigeria approximately 5,000 years ago, from where they spread South and East becoming the largest African linguistic branch. The demic consequences of this event are reflected in the relatively high genetic homogeneity observed across most of sub-Saharan Africa populations. In this work, we explored genome-wide single nucleotide polymorphism data from 28 populations to characterize the genetic components present in sub-Saharan African populations. Combining novel data from four Southern African populations with previously published results, we reject the hypothesis that the "non-Bantu" genetic component reported in South-Eastern Africa (Mozambique) reflects extensive gene flow between incoming agriculturalist and resident hunter-gatherer communities. We alternatively suggest that this novel component is the result of demographic dynamics associated with the Bantu dispersal.


Asunto(s)
Migración Humana , Polimorfismo de Nucleótido Simple , África del Sur del Sahara , Flujo Génico , Estudio de Asociación del Genoma Completo , Humanos , Lenguaje
9.
Curr Biol ; 25(19): 2518-26, 2015 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-26387712

RESUMEN

Over the past few years, studies of DNA isolated from human fossils and archaeological remains have generated considerable novel insight into the history of our species. Several landmark papers have described the genomes of ancient humans across West Eurasia, demonstrating the presence of large-scale, dynamic population movements over the last 10,000 years, such that ancestry across present-day populations is likely to be a mixture of several ancient groups [1-7]. While these efforts are bringing the details of West Eurasian prehistory into increasing focus, studies aimed at understanding the processes behind the generation of the current West Eurasian genetic landscape have been limited by the number of populations sampled or have been either too regional or global in their outlook [8-11]. Here, using recently described haplotype-based techniques [11], we present the results of a systematic survey of recent admixture history across Western Eurasia and show that admixture is a universal property across almost all groups. Admixture in all regions except North Western Europe involved the influx of genetic material from outside of West Eurasia, which we date to specific time periods. Within Northern, Western, and Central Europe, admixture tended to occur between local groups during the period 300 to 1200 CE. Comparisons of the genetic profiles of West Eurasians before and after admixture show that population movements within the last 1,500 years are likely to have maintained differentiation among groups. Our analysis provides a timeline of the gene flow events that have generated the contemporary genetic landscape of West Eurasia.


Asunto(s)
Pueblo Asiatico/genética , Evolución Molecular , Flujo Génico , Migración Humana , Población Blanca/genética , Simulación por Computador , ADN Mitocondrial/genética , Fósiles , Variación Genética , Genética de Población , Genómica , Haplotipos , Humanos , Filogenia
10.
Nat Commun ; 6: 6596, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25803618

RESUMEN

The movement of people into the Americas has brought different populations into contact, and contemporary American genomes are the product of a range of complex admixture events. Here we apply a haplotype-based ancestry identification approach to a large set of genome-wide SNP data from a variety of American, European and African populations to determine the contributions of different ancestral populations to the Americas. Our results provide a fine-scale characterization of the source populations, identify a series of novel, previously unreported contributions from Africa and Europe and highlight geohistorical structure in the ancestry of American admixed populations.


Asunto(s)
Indio Americano o Nativo de Alaska/genética , Pueblo Asiatico/genética , Población Negra/genética , Emigración e Inmigración , Genoma Humano/genética , Población Blanca/genética , América Central , Bases de Datos Genéticas , Genética de Población , Migración Humana , Humanos , América del Norte , Polimorfismo de Nucleótido Simple , América del Sur
11.
Front Genet ; 6: 32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25741361

RESUMEN

Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization.

13.
Mol Biol Evol ; 32(1): 29-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25223418

RESUMEN

A consensus on Bantu-speaking populations being genetically similar has emerged in the last few years, but the demographic scenarios associated with their dispersal are still a matter of debate. The frontier model proposed by archeologists postulates different degrees of interaction among incoming agropastoralist and resident foraging groups in the presence of "static" and "moving" frontiers. By combining mitochondrial DNA and Y chromosome data collected from several southern African populations, we show that Bantu-speaking populations from regions characterized by a moving frontier developing after a long-term static frontier have larger hunter-gatherer contributions than groups from areas where a static frontier was not followed by further spatial expansion. Differences in the female and male components suggest that the process of assimilation of the long-term resident groups into agropastoralist societies was gender biased. Our results show that the diffusion of Bantu languages and culture in Southern Africa was a process more complex than previously described and suggest that the admixture dynamics between farmers and foragers played an important role in shaping the current patterns of genetic diversity.


Asunto(s)
Población Negra/etnología , Población Negra/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , África Austral/etnología , Emigración e Inmigración , Femenino , Variación Genética , Genética de Población , Humanos , Masculino , Análisis de Componente Principal , Análisis de Regresión
14.
Nature ; 513(7518): 409-13, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25230663

RESUMEN

We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.


Asunto(s)
Genoma Humano/genética , Población Blanca/clasificación , Población Blanca/genética , Agricultura/historia , Asia/etnología , Europa (Continente) , Historia Antigua , Humanos , Dinámica Poblacional , Análisis de Componente Principal , Recursos Humanos
15.
Science ; 343(6172): 747-751, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24531965

RESUMEN

Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.


Asunto(s)
Simulación por Computador , Técnicas de Genotipaje , Migración Humana/historia , Modelos Genéticos , Población/genética , Alelos , Pintura Cromosómica/métodos , ADN/genética , Europa Oriental/etnología , Flujo Genético , Haplotipos , Historia Antigua , Humanos , Medio Oriente/etnología , Mongolia/etnología , Polimorfismo de Nucleótido Simple , Programas Informáticos
16.
PLoS One ; 8(12): e81704, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312576

RESUMEN

Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of "local ethnicity" on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood aspects of the genetic structure of European populations.


Asunto(s)
Cromosomas Humanos Y/genética , Demografía/historia , Flujo Génico , Variación Genética , Lingüística , Población Blanca/genética , Población Blanca/historia , Etnicidad/genética , Etnicidad/historia , Evolución Molecular , Femenino , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Población Blanca/etnología
17.
Proc Biol Sci ; 279(1730): 884-92, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21865258

RESUMEN

Recently, the debate on the origins of the major European Y chromosome haplogroup R1b1b2-M269 has reignited, and opinion has moved away from Palaeolithic origins to the notion of a younger Neolithic spread of these chromosomes from the Near East. Here, we address this debate by investigating frequency patterns and diversity in the largest collection of R1b1b2-M269 chromosomes yet assembled. Our analysis reveals no geographical trends in diversity, in contradiction to expectation under the Neolithic hypothesis, and suggests an alternative explanation for the apparent cline in diversity recently described. We further investigate the young, STR-based time to the most recent common ancestor estimates proposed so far for R-M269-related lineages and find evidence for an appreciable effect of microsatellite choice on age estimates. As a consequence, the existing data and tools are insufficient to make credible estimates for the age of this haplogroup, and conclusions about the timing of its origin and dispersal should be viewed with a large degree of caution.


Asunto(s)
Cromosomas Humanos Y , Población Blanca/genética , Asia Occidental , Emigración e Inmigración , Europa (Continente) , Variación Genética , Genética de Población , Geografía , Haplotipos , Humanos , Masculino , Medio Oriente , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...