Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Brain Commun ; 6(2): fcae102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585671

RESUMEN

Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.

2.
Neurobiol Aging ; 132: 56-66, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729770

RESUMEN

To elucidate the relationship between age and cognitive decline, it is important to consider structural brain changes such as white matter hyperintensities (WMHs), which are common in older age and may affect behavior. Therefore, we aimed to investigate if WMH load is a mediator of the relationship between age and cognitive decline. Healthy participants (N = 166, 20-80 years) completed the Montreal Cognitive Assessment (MoCA). WMHs were manually delineated on FLAIR scans. Mediation analysis was conducted to determine if WMH load mediates the relationship between age and cognition. Older age was associated with worse cognition (p < 0.001), but this was an indirect effect: older participants had more WMHs, and, in turn, increased WMH load was associated with worse MoCA scores. WMH load mediates the relationship between age and cognitive decline. Importantly, this relationship was not moderated by age (i.e., increased WMH severity is associated with poorer MoCA scores irrespective of age). Across all ages, high cholesterol was associated with increased WMH severity.


Asunto(s)
Disfunción Cognitiva , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética , Cognición , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología
3.
Neuroimage Clin ; 39: 103480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37536153

RESUMEN

For the past decade, brain health has been an emerging line of scientific inquiry assessing the impact of age-related neurostructural changes on cognitive decline and recovery from brain injury. Typically, compromised brain health is attributed to the presence of small vessel disease (SVD) and brain tissue atrophy, which are represented by various neuroimaging features. However, to date, the relationship between brain health markers and chronic aphasia severity remains unclear. Thus, the goal of this scoping review was to assess the current body of evidence regarding the relationship between SVD-related brain health biomarkers and post-stroke aphasia and cognition. In all, 187 articles were identified from 3 databases, of which 16 articles met the criteria for inclusion. Among these studies, 11 focused on cognition rather than aphasia, while 2 investigated both. Of the 10 studies that used white matter hyperintensities (WMHs) as an indicator of SVD severity, 8 studies (80%) demonstrated a relationship between WMH load and worse cognition in stroke patients. Interestingly, among the studies that specifically investigated aphasia, all 5 studies (100%) demonstrated a relationship between SVD and worse language performance. They also indicated that factors other than brain health (e.g., lesion, age, time post onset) played an important role in determining aphasia severity at a single timepoint. These findings suggest that brain health is likely a crucial factor in the context of aphasia recovery, possibly indicating the necessity of cognitive reserve thresholds for the multimodal cognitive demands associated with language recovery. While SVD and structural brain health are not commonly considered as predictors of aphasia severity, more comprehensive models incorporating brain health have the potential to improve prognosis of post-stroke cognitive and language deficits. Given the variability in the existing literature, a uniform grading system for overall SVD would be beneficial for future research on the mechanisms related to brain networks and neuroplasticity, and their translational impact.


Asunto(s)
Afasia , Enfermedades de los Pequeños Vasos Cerebrales , Accidente Cerebrovascular , Humanos , Imagen por Resonancia Magnética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Encéfalo/diagnóstico por imagen , Cognición , Afasia/etiología , Afasia/complicaciones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/psicología
4.
Neurobiol Aging ; 130: 135-140, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37506551

RESUMEN

BACKGROUND: Premature age-related brain changes may be influenced by physical health factors. Lower socioeconomic status (SES) is often associated with poorer physical health. In this study, we aimed to investigate the relationship between SES and premature brain aging. METHODS: Brain age was estimated from T1-weighted images using BrainAgeR in 217 participants from the ABC@UofSC Repository. The difference between brain and chronological age (BrainGAP) was calculated. Multiple regression models were used to predict BrainGAP with age, SES, body mass index, diabetes, hypertension, sex, race, and education as predictors. SES was calculated from size-adjusted household income and the cost of living. RESULTS: Fifty-five participants (25.35%) had greater brain age than chronological age (premature brain aging). Multiple regression models revealed that age, sex, and SES were significant predictors of BrainGAP with lower SES associated with greater BrainGAP (premature brain aging). CONCLUSIONS: This study demonstrates that lower SES is an independent contributor to premature brain aging. This may provide additional insight into the mechanisms associated with brain health, cognition, and resilience to neurological injury.


Asunto(s)
Envejecimiento Prematuro , Hipertensión , Humanos , Clase Social , Encéfalo/diagnóstico por imagen , Escolaridad , Envejecimiento Prematuro/etiología , Envejecimiento , Factores Socioeconómicos
5.
Commun Biol ; 6(1): 727, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452209

RESUMEN

Brain structure deteriorates with aging and predisposes an individual to more severe language impairments (aphasia) after a stroke. However, the underlying mechanisms of this relation are not well understood. Here we use an approach to model brain network properties outside the stroke lesion, network controllability, to investigate relations among individualized structural brain connections, brain age, and aphasia severity in 93 participants with chronic post-stroke aphasia. Controlling for the stroke lesion size, we observe that lower average controllability of the posterior superior temporal gyrus (STG) mediates the relation between advanced brain aging and aphasia severity. Lower controllability of the left posterior STG signifies that activity in the left posterior STG is less likely to yield a response in other brain regions due to the topological properties of the structural brain networks. These results indicate that advanced brain aging among individuals with post-stroke aphasia is associated with disruption of dynamic properties of a critical language-related area, the STG, which contributes to worse aphasic symptoms. Because brain aging is variable among individuals with aphasia, our results provide further insight into the mechanisms underlying the variance in clinical trajectories in post-stroke aphasia.


Asunto(s)
Afasia , Accidente Cerebrovascular , Humanos , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Afasia/etiología , Afasia/diagnóstico , Afasia/patología , Accidente Cerebrovascular/complicaciones , Lóbulo Temporal
6.
Cereb Cortex ; 33(13): 8557-8564, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37139636

RESUMEN

In post-stroke aphasia, language improvements following speech therapy are variable and can only be partially explained by the lesion. Brain tissue integrity beyond the lesion (brain health) may influence language recovery and can be impacted by cardiovascular risk factors, notably diabetes. We examined the impact of diabetes on structural network integrity and language recovery. Seventy-eight participants with chronic post-stroke aphasia underwent six weeks of semantic and phonological language therapy. To quantify structural network integrity, we evaluated the ratio of long-to-short-range white matter fibers within each participant's whole brain connectome, as long-range fibers are more susceptible to vascular injury and have been linked to high level cognitive processing. We found that diabetes moderated the relationship between structural network integrity and naming improvement at 1 month post treatment. For participants without diabetes (n = 59), there was a positive relationship between structural network integrity and naming improvement (t = 2.19, p = 0.032). Among individuals with diabetes (n = 19), there were fewer treatment gains and virtually no association between structural network integrity and naming improvement. Our results indicate that structural network integrity is associated with treatment gains in aphasia for those without diabetes. These results highlight the importance of post-stroke structural white matter architectural integrity in aphasia recovery.


Asunto(s)
Afasia , Diabetes Mellitus , Accidente Cerebrovascular , Humanos , Afasia/diagnóstico por imagen , Afasia/etiología , Afasia/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Accidente Cerebrovascular/patología , Lenguaje , Diabetes Mellitus/patología
7.
Brain Commun ; 5(2): fcad014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056476

RESUMEN

In stroke aphasia, lesion volume is typically associated with aphasia severity. Although this relationship is likely present throughout recovery, different factors may affect lesion volume and behaviour early into recovery (acute) and in the later stages of recovery (chronic). Therefore, studies typically separate patients into two groups (acute/chronic), and this is often accompanied with arguments for and against using data from acute stroke patients over chronic. However, no comprehensive studies have provided strong evidence of whether the lesion-behaviour relationship early in recovery is comparable to later in the recovery trajectory. To that end, we investigated two aims: (i) whether lesion data from acute and chronic patients yield similar results in region-based lesion-symptom mapping analyses and (ii) if models based on one timepoint accurately predict the other. Lesions and aphasia severity scores from acute (N = 63) and chronic (N = 109) stroke survivors with aphasia were entered into separate univariate region-based lesion-symptom mapping analyses. A support vector regression model was trained on lesion data from either the acute or chronic data set to give an estimate of aphasia severity. Four model-based analyses were conducted: trained on acute/chronic using leave-one-out, tested on left-out behaviour or trained on acute/chronic to predict the other timepoint. Region-based lesion-symptom mapping analyses identified similar but not identical regions in both timepoints. All four models revealed positive correlations between actual and predicted Western Aphasia Battery-Revised aphasia-quotient scores. Lesion-to-behaviour predictions were almost equivalent when comparing within versus across stroke stage, despite differing lesion size/locations and distributions of aphasia severity between stroke timepoints. This suggests that research investigating the brain-behaviour relationship including subsets of patients from only one timepoint may also be applicable at other timepoints, although it is important to note that these comparable findings may only be seen using broad measures such as aphasia severity, rather than those aimed at identifying more specific deficits. Subtle differences found between timepoints may also be useful in understanding the nature of lesion volume and aphasia severity over time. Stronger correlations found when predicting acute behaviour (e.g. predicting acute: r = 0.6888, P < 0.001, predicting chronic r = 0.5014, P < 0.001) suggest that the acute lesion/perfusion patterns more accurately capture the critical changes in underlying vascular territories. Differences in critical brain regions between timepoints may shed light on recovery patterns. Future studies could focus on a longitudinal design to compare acute and chronic patients in a more controlled manner.

8.
J Speech Lang Hear Res ; 66(3): 1068-1084, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36827514

RESUMEN

BACKGROUND: Aphasia therapy is an effective approach to improve language function in chronic aphasia. However, it remains unclear what prognostic factors facilitate therapy response at the individual level. Here, we utilized data from the POLAR (Predicting Outcomes of Language Rehabilitation in Aphasia) trial to (a) determine therapy-induced change in confrontation naming and long-term maintenance of naming gains and (b) examine the extent to which aphasia severity, age, education, time postonset, and cognitive reserve predict naming gains at 1 week, 1 month, and 6 months posttherapy. METHOD: A total of 107 participants with chronic (≥ 12 months poststroke) aphasia underwent extensive case history, cognitive-linguistic testing, and a neuroimaging workup prior to receiving 6 weeks of impairment-based language therapy. Therapy-induced change in naming performance (measured as raw change on the 175-item Philadelphia Naming Test [PNT]) was assessed 1 week after therapy and at follow-up time points 1 month and 6 months after therapy completion. Change in naming performance over time was evaluated using paired t tests, and linear mixed-effects models were constructed to examine the association between prognostic factors and therapy outcomes. RESULTS: Naming performance was improved by 5.9 PNT items (Cohen's d = 0.56, p < .001) 1 week after therapy and by 6.4 (d = 0.66, p < .001) and 7.5 (d = 0.65, p < .001) PNT items at 1 month and 6 months after therapy completion, respectively. Aphasia severity emerged as the strongest predictor of naming improvement recovery across time points; mild (ß = 5.85-9.02) and moderate (ß = 9.65-11.54) impairment predicted better recovery than severe (ß = 1.31-3.37) and very severe (ß = 0.20-0.32) aphasia. Age was an emergent prognostic factor for recovery 1 month (ß = -0.14) and 6 months (ß = -0.20) after therapy, and time postonset (ß = -0.05) was associated with retention of naming gains at 6 months posttherapy. CONCLUSIONS: These results suggest that therapy-induced naming improvement is predictable based on several easily measurable prognostic factors. Broadly speaking, these results suggest that prognostication procedures in aphasia therapy can be improved and indicate that personalization of therapy is a realistic goal in the near future. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.22141829.


Asunto(s)
Afasia , Logopedia , Rehabilitación de Accidente Cerebrovascular , Humanos , Afasia/etiología , Afasia/terapia , Lenguaje , Pronóstico , Accidente Cerebrovascular/complicaciones , Logopedia/métodos
9.
Neurology ; 100(11): e1166-e1176, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36526425

RESUMEN

BACKGROUND AND OBJECTIVES: Chronic poststroke language impairment is typically worse in older individuals or those with large stroke lesions. However, there is unexplained variance that likely depends on intact tissue beyond the lesion. Brain age is an emerging concept, which is partially independent from chronologic age. Advanced brain age is associated with cognitive decline in healthy older adults; therefore, we aimed to investigate the relationship with stroke aphasia. We hypothesized that advanced brain age is a significant factor associated with chronic poststroke language impairments, above and beyond chronologic age, and lesion characteristics. METHODS: This cohort study retrospectively evaluated participants from the Predicting Outcomes of Language Rehabilitation in Aphasia clinical trial (NCT03416738), recruited through local advertisement in South Carolina (US). Primary inclusion criteria were left hemisphere stroke and chronic aphasia (≥12 months after stroke). Participants completed baseline behavioral testing including the Western Aphasia Battery-Revised (WAB-R), Philadelphia Naming Test (PNT), Pyramids and Palm Trees Test (PPTT), and Wechsler Adult Intelligence Scale Matrices subtest, before completing 6 weeks of language therapy. The PNT was repeated 1 month after therapy. We leveraged modern neuroimaging techniques to estimate brain age and computed a proportional difference between chronologic age and estimated brain age. Multiple linear regression models were used to evaluate the relationship between proportional brain age difference (PBAD) and behavior. RESULTS: Participants (N = 93, 58 males and 35 females, average age = 61 years) had estimated brain ages ranging from 14 years younger to 23 years older than chronologic age. Advanced brain age predicted performance on semantic tasks (PPTT) and language tasks (WAB-R). For participants with advanced brain aging (n = 47), treatment gains (improvement on the PNT) were independently predicted by PBAD (T = -2.0474, p = 0.0468, 9% of variance explained). DISCUSSION: Through the application of modern neuroimaging techniques, advanced brain aging was associated with aphasia severity and performance on semantic tasks. Notably, therapy outcome scores were also associated with PBAD, albeit only among participants with advanced brain aging. These findings corroborate the importance of brain age as a determinant of poststroke recovery and underscore the importance of personalized health factors in determining recovery trajectories, which should be considered during the planning or implementation of therapeutic interventions.


Asunto(s)
Afasia , Trastornos del Lenguaje , Accidente Cerebrovascular , Masculino , Femenino , Humanos , Anciano , Persona de Mediana Edad , Adolescente , Estudios de Cohortes , Estudios Retrospectivos , Pruebas del Lenguaje , Afasia/etiología , Afasia/complicaciones , Accidente Cerebrovascular/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/patología
10.
Arch Rehabil Res Clin Transl ; 5(4): 100302, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38163020

RESUMEN

Objective: To determine whether longitudinal progression of small vessel disease in chronic stroke survivors is associated with longitudinal worsening of chronic aphasia severity. Design: A longitudinal retrospective study. Severity of white matter hyperintensities (WMHs) as a marker for small vessel disease was assessed on fluid-attenuated inversion recovery (FLAIR) scans using the Fazekas scale, with ratings for deep WMHs (DWMHs) and periventricular WMHs (PVHs). Setting: University research laboratories. Participants: This study includes data from 49 chronic stroke survivors with aphasia (N=49; 15 women, 34 men, age range=32-81 years, >6 months post-stroke, stroke type: [46 ischemic, 3 hemorrhagic], community dwelling). All participants completed the Western Aphasia Battery-Revised (WAB) and had FLAIR scans at 2 timepoints (average years between timepoints: 1.87 years, SD=3.21 years). Interventions: Not applicable. Main Outcome Measures: Change in white matter hyperintensity severity (calculated using the Fazekas scale) and change in aphasia severity (difference in Western Aphasia Battery scores) were calculated between timepoints. Separate stepwise regression models were used to identify predictors of WMH severity change, with lesion volume, age, time between timepoints, body mass index (BMI), and presence of diabetes as independent variables. Additional stepwise regression models investigated predictors of change in aphasia severity, with PVH change, DWMH change, lesion volume, time between timepoints, and age as independent predictors. Results: 22.5% of participants (11/49) had increased WMH severity. Increased BMI was associated with increases in PVH severity (P=.007), whereas the presence of diabetes was associated with increased DWMH severity (P=.002). Twenty-five percent of participants had increased aphasia severity which was significantly associated with increased severity of PVH (P<.001, 16.8% variance explained). Conclusion: Increased small vessel disease burden is associated with contributing to chronic changes in aphasia severity. These findings support the idea that good cardiovascular risk factor control may play an important role in the prevention of long-term worsening of aphasic symptoms.

11.
Aging (Albany NY) ; 14(23): 9458-9465, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36455869

RESUMEN

BACKGROUND: Brain age is an MRI-derived estimate of brain tissue loss that has a similar pattern to aging-related atrophy. White matter hyperintensities (WMHs) are neuroimaging markers of small vessel disease and may represent subtle signs of brain compromise. We tested the hypothesis that WMHs are independently associated with premature brain age in an original aging cohort. METHODS: Brain age was calculated using machine-learning on whole-brain tissue estimates from T1-weighted images using the BrainAgeR analysis pipeline in 166 healthy adult participants. WMHs were manually delineated on FLAIR images. WMH load was defined as the cumulative volume of WMHs. A positive difference between estimated brain age and chronological age (BrainGAP) was used as a measure of premature brain aging. Then, partial Pearson correlations between BrainGAP and volume of WMHs were calculated (accounting for chronological age). RESULTS: Brain and chronological age were strongly correlated (r(163)=0.932, p<0.001). There was significant negative correlation between BrainGAP scores and chronological age (r(163)=-0.244, p<0.001) indicating that younger participants had higher BrainGAP (premature brain aging). Chronological age also showed a positive correlation with WMH load (r(163)=0.506, p<0.001) indicating older participants had increased WMH load. Controlling for chronological age, there was a statistically significant relationship between premature brain aging and WMHs load (r(163)=0.216, p=0.003). Each additional year in brain age beyond chronological age corresponded to an additional 1.1mm3 in WMH load. CONCLUSIONS: WMHs are an independent factor associated with premature brain aging. This finding underscores the impact of white matter disease on global brain integrity and progressive age-like brain atrophy.


Asunto(s)
Envejecimiento Prematuro , Leucoaraiosis , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Envejecimiento , Imagen por Resonancia Magnética/métodos , Envejecimiento Prematuro/patología , Leucoaraiosis/patología , Atrofia/patología
12.
Cortex ; 156: 126-143, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244204

RESUMEN

Semantic processing is a central component of language and cognition. The anterior temporal lobe is postulated to be a key hub for semantic processing, but the posterior temporoparietal cortex is also involved in thematic associations during language. It is possible that these regions act in concert and depend on an anteroposterior network linking the temporal pole with posterior structures to support thematic semantic processing during language production. We employed connectome-based lesion-symptom mapping to examine the causal relationship between lesioned white matter pathways and thematic processing language deficits among individuals with post-stroke aphasia. Seventy-nine adults with chronic aphasia completed the Philadelphia Naming Test, and semantic errors were coded as either thematic or taxonomic to control for taxonomic errors. Controlling for nonverbal conceptual-semantic knowledge as measured by the Pyramids and Palm Trees Test, lesion size, and the taxonomic error rate, thematic error rate was associated with loss of white matter connections from the temporal pole traversing in peri-Sylvian regions to the posterior cingulate and the insula. These findings support the existence of a distributed network underlying thematic relationship processing in language as opposed to discrete cortical areas.


Asunto(s)
Afasia , Conectoma , Humanos , Adulto , Lenguaje , Semántica , Mapeo Encefálico , Imagen por Resonancia Magnética , Afasia/etiología , Redes Neurales de la Computación
13.
Brain Commun ; 4(5): fcac252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267328

RESUMEN

The association between age and language recovery in stroke remains unclear. Here, we used neuroimaging data to estimate brain age, a measure of structural integrity, and examined the extent to which brain age at stroke onset is associated with (i) cross-sectional language performance, and (ii) longitudinal recovery of language function, beyond chronological age alone. A total of 49 participants (age: 65.2 ± 12.2 years, 25 female) underwent routine clinical neuroimaging (T1) and a bedside evaluation of language performance (Bedside Evaluation Screening Test-2) at onset of left hemisphere stroke. Brain age was estimated from enantiomorphically reconstructed brain scans using a machine learning algorithm trained on a large sample of healthy adults. A subsample of 30 participants returned for follow-up language assessments at least 2 years after stroke onset. To account for variability in age at stroke, we calculated proportional brain age difference, i.e. the proportional difference between brain age and chronological age. Multiple regression models were constructed to test the effects of proportional brain age difference on language outcomes. Lesion volume and chronological age were included as covariates in all models. Accelerated brain age compared with age was associated with worse overall aphasia severity (F(1, 48) = 5.65, P = 0.022), naming (F(1, 48) = 5.13, P = 0.028), and speech repetition (F(1, 48) = 8.49, P = 0.006) at stroke onset. Follow-up assessments were carried out ≥2 years after onset; decelerated brain age relative to age was significantly associated with reduced overall aphasia severity (F(1, 26) = 5.45, P = 0.028) and marginally failed to reach statistical significance for auditory comprehension (F(1, 26) = 2.87, P = 0.103). Proportional brain age difference was not found to be associated with changes in naming (F(1, 26) = 0.23, P = 0.880) and speech repetition (F(1, 26) = 0.00, P = 0.978). Chronological age was only associated with naming performance at stroke onset (F(1, 48) = 4.18, P = 0.047). These results indicate that brain age as estimated based on routine clinical brain scans may be a strong biomarker for language function and recovery after stroke.

14.
Cortex ; 154: 375-389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926368

RESUMEN

BACKGROUND: Lesion-related factors are associated with severity of language impairment in persons with aphasia. The extent to which demographic and health factors predict language impairment beyond traditional cortical measures remains unknown. Identifying and understanding the contributions of factors to predictive models of severity constitutes critical knowledge for clinicians interested in charting the likely course of aphasia in their patients and designing effective treatment approaches in light of those predictions. METHODS: Utilizing neuroimaging and language testing from our cohort of 224 individuals in the chronic stage of recovery from a left-hemisphere stroke in a cross-sectional study, we first conducted a lesion symptom mapping (LSM) analysis to identify regions associated with aphasia severity scores. After controlling for lesion volume and damage to pre-identified areas, three models were created to predict severity scores: 1) Demographic Model (N = 147); 2) Health Model (N = 106); and 3) Overall Model (N = 106). Finally, all identified factors were entered into a Final Model to predict raw severity scores. RESULTS: Two areas were associated with aphasia severity-left posterior insula and left arcuate fasciculus. The results from the Demographic Model revealed non-linguistic cognitive ability, age at stroke, and time post-stroke as significant predictors of severity (P = .005; P = .02; P = .001, respectively), and results from the Health Model suggested the extent of leukoaraiosis is associated with severity (P = .0004). The Overall Model showed a relationship between aphasia severity and cognitive ability (P = .01), time post-stroke (P = .002), and leukoaraiosis (P = .01). In the Final Model, which aimed to predict raw severity scores, demographic, health, and lesion factors explained 55% of the variance in severity, with health and demographic factors uniquely explaining nearly half of performance variance. CONCLUSIONS: Results from this study add to the literature suggesting patient-specific variables can shed light on individual differences in severity beyond lesion factors. Additionally, our results emphasize the importance of non-linguistic cognitive ability and brain health in aphasia recovery.


Asunto(s)
Afasia , Trastornos del Desarrollo del Lenguaje , Leucoaraiosis , Accidente Cerebrovascular , Encéfalo , Estudios Transversales , Demografía , Humanos , Imagen por Resonancia Magnética
15.
Cortex ; 113: 1-14, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30557759

RESUMEN

In neurosurgery there are several situations that require transgression of the temporal cortex. For example, a subset of patients with temporal lobe epilepsy require surgical resection (most typically, en-bloc anterior temporal lobectomy). This procedure is the gold standard to alleviate seizures but is associated with chronic cognitive deficits. In recent years there have been multiple attempts to find the optimum balance between minimising the size of resection in order to preserve cognitive function, while still ensuring seizure freedom. Some attempts involve reducing the distance that the resection stretches back from the temporal pole, whilst others try to preserve one or more of the temporal gyri. More recent advanced surgical techniques (selective amygdalo-hippocamptectomies) try to remove the least amount of tissue by going under (sub-temporal), over (trans-Sylvian) or through the temporal lobe (middle-temporal), which have been related to better cognitive outcomes. Previous comparisons of these surgical techniques focus on comparing seizure freedom or behaviour post-surgery, however there have been no systematic studies showing the effect of surgery on white matter connectivity. The main aim of this study, therefore, was to perform systematic 'pseudo-neurosurgery' based on existing resection methods on healthy neuroimaging data and measuring the effect on long-range connectivity. We use anatomical connectivity maps (ACM) to determine long-range disconnection, which is complementary to existing measures of local integrity such as fractional anisotropy or mean diffusivity. ACMs were generated for each diffusion scan in order to compare whole-brain connectivity with an 'ideal resection', nine anterior temporal lobectomy and three selective approaches. For en-bloc resections, as distance from the temporal pole increased, reduction in connectivity was evident within the arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and the uncinate fasciculus. Increasing the height of resections dorsally reduced connectivity within the uncinate fasciculus. Sub-temporal amygdalohippocampectomy resections were associated with connectivity patterns most similar to the 'ideal' baseline resection, compared to trans-Sylvian and middle-temporal approaches. In conclusion, we showed the utility of ACM in assessing long-range disconnections/disruptions during temporal lobe resections, where we identified the sub-temporal resection as the least disruptive to long-range connectivity which may explain its better cognitive outcome. These results have a direct impact on understanding the amount and/or type of cognitive deficit post-surgery, which may not be obtainable using local measures of white matter integrity.


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Encéfalo/cirugía , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Red Nerviosa/cirugía , Procedimientos Neuroquirúrgicos , Sustancia Blanca/cirugía
16.
Biol Open ; 7(4)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700198

RESUMEN

Recently, we showed a novel property of the Hassenstein-Reichardt detector, namely that insect motion detection can be masked by 'undetectable' noise, i.e. visual noise presented at spatial frequencies at which coherently moving gratings do not elicit a response (Tarawneh et al., 2017). That study compared the responses of human and insect motion detectors using different ways of quantifying masking (contrast threshold in humans and masking tuning function in insects). In addition, some adjustments in experimental procedure, such as presenting the stimulus at a short viewing distance, were necessary to elicit a response in insects. These differences offer alternative explanations for the observed difference between human and insect responses to visual motion noise. Here, we report the results of new masking experiments in which we test whether differences in experimental paradigm and stimulus presentation between humans and insects can account for the undetectable noise effect reported earlier. We obtained contrast thresholds at two signal and two noise frequencies in both humans and praying mantises (Sphodromantis lineola), and compared contrast threshold differences when noise has the same versus different spatial frequency as the signal. Furthermore, we investigated whether differences in viewing geometry had any qualitative impact on the results. Consistent with our earlier finding, differences in contrast threshold show that visual noise masks much more effectively when presented at signal spatial frequency in humans (compared to a lower or higher spatial frequency), while in insects, noise is roughly equivalently effective when presented at either the signal spatial frequency or lower (compared to a higher spatial frequency). The characteristic difference between human and insect responses was unaffected by correcting for the stimulus distortion caused by short viewing distances in insects. These findings constitute stronger evidence that the undetectable noise effect reported earlier is a genuine difference between human and insect motion processing, and not an artefact caused by differences in experimental paradigms.

17.
Artículo en Inglés | MEDLINE | ID: mdl-25894490

RESUMEN

The detection of visual motion and its direction is a fundamental task faced by several visual systems. The motion detection system of insects has been widely studied with the majority of studies focussing on flies and bees. Here we characterize the contrast sensitivity of motion detection in the praying mantis Sphodromantis lineola, an ambush predator that stays stationary for long periods of time while preying on fast-moving prey. In this, its visual behaviour differs from previously studied insects and we might therefore expect its motion detection system to differ from theirs. To investigate the sensitivity of the mantis we analyzed its optomotor response in response to drifting gratings with different contrasts and spatio-temporal frequencies. We find that the contrast sensitivity of the mantis depends on the spatial and temporal frequencies present in the stimulus and is separably tuned to spatial and temporal frequency rather than specifically to object velocity. Our results also suggest that mantises are sensitive to a broad range of velocities, in which they differ from bees and are more similar to hoverflies. We discuss our results in relation to the contrast sensitivities of other insects and the visual ecology of the mantis.


Asunto(s)
Sensibilidad de Contraste , Mantódeos/fisiología , Percepción de Movimiento , Animales , Femenino , Estimulación Luminosa , Psicometría , Especificidad de la Especie
18.
Cancer ; 121(12): 2078-82, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25781862

RESUMEN

BACKGROUND: Prognostic variables are independently associated with survival and are fundamental to clinical trial design. In the current study, the authors evaluated the impact of stage of disease at the time of the initial diagnosis on overall survival (OS) in 2 independent, oncogene-defined cohorts. METHODS: All patients with epidermal growth factor receptor (EGFR)-mutant and KRAS-mutant metastatic lung adenocarcinomas were identified through routine molecular testing from January 2005 through January 2011. Clinical characteristics were obtained. OS from the date of diagnosis of recurrent or de novo metastatic disease was estimated using the Kaplan-Meier method. RESULTS: A total of 635 patients with KRAS-mutant and 496 patients with EGFR-mutant metastatic lung adenocarcinomas were identified. Among patients with KRAS-mutant lung adenocarcinomas, those with de novo metastatic disease were found to have a shorter median OS compared with those with recurrent metastatic disease (13 months vs 18 months; P = .003). In a multivariable analysis of patients with KRAS-mutant lung adenocarcinomas, de novo metastatic disease at the time of diagnosis (TNM stage IV vs stage I-III: hazard ratio, 1.5 [95% confidence interval, 1.2-1.8]; P<.001) was independently associated with shorter OS. In patients with EGFR-mutant lung adenocarcinomas, after controlling for age and Karnofsky performance status, de novo metastatic disease at the time of diagnosis (stage IV vs stage I-III: hazard ratio, 1.3 [95% confidence interval, 1.0-1.7]; P = .03) was found to be independently associated with shorter OS. CONCLUSIONS: Among patients with KRAS-mutant lung adenocarcinomas, stage of disease at diagnosis was associated with OS from the time of diagnosis of recurrent/metastatic disease. In multivariable analyses, in both patients with EGFR-mutant and KRAS-mutant lung adenocarcinomas, advanced stage at the time of diagnosis was found to be independently associated with shorter survival. Stage at diagnosis is a prognostic variable that should be accounted for in prospective studies in patients with metastatic lung adenocarcinomas.


Asunto(s)
Adenocarcinoma/genética , Receptores ErbB/genética , Genes ras , Neoplasias Pulmonares/genética , Mutación , Recurrencia Local de Neoplasia/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Análisis de Supervivencia , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...